Nava Setter, Mobile Two Dimensional Gas

© 2013 EPFL

© 2013 EPFL

Nava Setter, Director of the Ceramics Laboratory at the School of School of Engineering, has been awarded for a PROOF OF CONCEPT GRANT 2013 from the European Research Council (ERC). The excellence of the research performed at EPFL has once again been recognized at an international level.

Mobile Two Dimensional Gas

In certain physical interfaces between two different materials, or in physical surfaces, electrons or holes behave as if they were confined to two dimensions, forming a 2-dimensional gas, [2DG] and showing exceptional properties, such as very high mobility. 2DG is a common phenomenon widely used, e.g. in Metal-oxide-semiconductor field effect transistors (MOSFETs), currently used in nearly all microprocessors. 2DG is usually confined to physical interfaces between two different materials and its physical location is fixed.

Imagine now a new type of 2DG, which is not confined to a physical interface but can be created electrically inside a pure single material; it could be electrically ‘written’ into a working device at will, and could be displaced inside the material by a small voltage pulse. In our ERC project we predicted this theoretically and demonstrated it experimentally inside a single crystal of the ubiquitous insulator BaTiO3. In contrast to conventional 2DG, our 2DG isn't bound to an interface. The free carrier concentration at our 2DG reaches giant 10power19 cm-3 and its metallic conductivity exceeds 10power9 times the bulk conductivity. We have also elaborated and filed a patent application on a way to produce this 2DG inside the insulator.
In principle this effect can work in all ferroelectric materials. In the PoC project we plan to demonstrate the phenomenon inside thin films, which are more industrially viable than the bulk crystal used for our first demonstration, to demonstrate the function of our field-controlled 2DG in an industrially exploitable structure, and explore together with Industry applicability of devices based on this new phenomenon in electronics and related areas, such as MEMS.

Max ERC funding: 0.15 million Euros
Duration: 12 months
Host institution: EPFL
Project acronym: MOBILE2DG