La formation des pérovskites enfin révélée

Crédit: M. Grätzel/EPFL

Crédit: M. Grätzel/EPFL

Des scientifiques de l'EPFL étudient systématiquement les voies de la réaction de déposition séquentielle utilisée pour créer les panneaux solaires en pérovskite. L'étude est publiée dans Science Advances et offre une compréhension fondamentale indispensable de la formation des pérovskites et ses différentes étapes.

Image: Image au microscope électronique à balayage montrant la formation de la pérovskite d'iodure de méthylammonium (CH3NH3PbI3) par réaction de films d'iodure de plomb (PbI2) avec une solution d'iodure de méthylammonium (CH3NH3I) pendant 2 secondes dans l'obscurité. La croissance d'un cristal de PbI2 (surligné en jaune) à partir du film de PbI2 partiellement amorphe est visible. L'image montre une surface de 2,77 microns x 2,08 microns.

Les cellules solaires en pérovskite sont une alternative aux cellules solaires conventionnelles en silicium, et s'apprêtent à entrer sur le marché avec leur rendement élevé de conversion du rayonnement solaire (plus de 22% actuellement), et leurs faibles coûts en termes de dépenses d'investissement et de fabrication.

L'une des principales méthodes de déposition des films de la pérovskite sur la structure des panneaux est un procédé connu sous le nom de déposition séquentielle, développé en 2013 par Michael Grätzel et ses collaborateurs à l'EPFL. De nombreuses études ont tenté de maîtriser ce procédé avec des additifs, des changements de composition et des effets de température. Néanmoins, aucune de ces méthodes n'a pu fournir une compréhension complète de la réaction de déposition séquentielle dans son entier, ce qui empêche un contrôle adéquat de la qualité du film, qui est déterminante pour la performance de la cellule solaire.

Une étude menée par Michael Grätzel et Amita Ummadisingu à l'EPFL vient de livrer l'étude la plus systématique et la plus complète à ce jour de la réaction de déposition séquentielle. Les scientifiques ont commencé par une analyse de diffraction aux rayons X et une microscopie électronique à balayage (SEM) pour étudier en profondeur la cristallisation du iodure de plomb (PbI2), qui constitue le premier niveau de la réaction. Puis ils ont utilisé, pour la première fois, de l'imagerie en cathodoluminescence en SEM pour étudier la dynamique de la formation du film de la pérovskite à l'échelle nanométrique.

«Nous avons mis ensemble deux outils puissants pour obtenir une information de composition sur la surface du film pendant la formation des pérovskites», dit Amita Ummadisingu. «Cette technique nous permet d'atteindre une résolution étonnante à l'échelle nanométrique, ce qui signifie que nous pouvons voir, pour la première fois, que des agrégats cristallins mélangés composés de la pérovskite et de PbI2 se forment pendant la réaction».

Puis les scientifiques ont recouru à un mappage transversal en photo-luminescence qui a révélé l'orientation de la réaction de conversion. Ce type d'information était jusqu'ici inaccessible avec de l'imagerie de surface standard, parce que les couches se trouvant les unes en-dessous des autres sont inatteignables. Mais au moyen de détecteurs de photons hybrides à haute-définition de dernière génération, les chercheurs ont pu photographier simultanément le PbI2 et les pérovskites dans ces coupes transversales. «Nous avons identifié du PbI2 captif et inaltéré dans le film de la pérovskite en utilisant cette technique, qui est très utile», dit Ummadisingu.

«Notre découverte répond enfin à un certain nombre de questions ouvertes concernant l'emplacement et le rôle du PbI2 dans les cellules solaires en pérovskite», dit Michael Grätzel. «Plus largement, notre démonstration innovante de l'utilisation de cette technique ouvre la porte à la compréhension des propriétés des pérovskites sous la forme de coupes transversales des cellules solaires, et pas simplement la surface des pérovskites telle qu'elle est couramment montrée dans la littérature».

Financement

Fonds National Suisse (SNSF)

Référence

A. Ummadisingu, M. Grätzel, Revealing the detailed path of sequential deposition for metal halide perovskite formation. Science Advances 4, e1701402 (02 February 2018). DOI: 10.1126/sciadv.1701402