In Situ Observation of Coulomb Fission of Individual Plasmonic Nanopa

© 2019 EPFL

© 2019 EPFL

LND Publication in ACS Nano

Reshaping plasmonic nanoparticles with laser pulses has been extensively researched as a tool for tuning their properties. However, in the absence of direct observations of the processes involved, important mechanistic details have remained elusive. Here, we present an in situ electron microscopy study of one such process that involves Coulomb fission of plasmonic nanoparticles under femtosecond laser irradiation. We observe that gold nanoparticles encapsulated in a silica shell fission by emitting progeny droplets comprised of about 10–500 atoms, with ejection preferentially occurring along the laser polarization direction. Under continued irradiation, the emitted droplets coalesce into a second core within the silica shell, and the system evolves into a dual-core particle. Our findings are consistent with a mechanism in which electrons are preferentially emitted from the gold core along the laser polarization direction. The resulting anisotropic charge distribution in the silica shell then determines the direction in which progeny droplets are ejected. In addition to yielding insights into the mechanism of Coulomb fission in plasmonic nanoparticles, our experiments point toward a facile method for forming surfaces decorated with aligned dual-gold-core silica shell particles.


Jonathan M. Voss, Pavel K. Olshin, Romain Charbonnier, Marcel Drabbels and Ulrich J. Lorenz

Author: Annick Gaudin Delmonaco