EPFL Papers at NeurIPS 2019
EPFL is proud to present the following 25 papers at NeurIPS, the 33rd Conference on Neural Information Processing Systems in Vancouver, Canada.
If you are attending NeurIPS 2019, we hope to meet and discuss!
List of Accepted EPFL Papers:
- Reducing Noise in GAN Training with Variance Reduced Extragradient
Tatjana Chavdarova (Mila & Idiap & EPFL) · Gauthier Gidel (Mila) · François Fleuret (Idiap Research Institute & EPFL) · Simon Lacoste-Julien (Mila, Université de Montréal) - A Linearly Convergent Proximal Gradient Algorithm for Decentralized Optimization
Sulaiman Alghunaim (UCLA) · Kun Yuan (UCLA) · Ali H Sayed (EPFL) - Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan (RIKEN) · Alexander Immer (EPFL, RIKEN) · Ehsan Abedi (EPFL) · Maciej Korzepa (Technical University of Denmark) - Backpropagation-Friendly Eigendecomposition
Wei Wang (EPFL) · Zheng Dang (Xi'an Jiaotong University) · Yinlin Hu (EPFL) · Pascal Fua (EPFL, Switzerland) · Mathieu Salzmann (EPFL) - Full-Gradient Representation for Neural Network Visualization
Suraj Srinivas (Idiap Research Institute & EPFL) · François Fleuret (Idiap Research Institute & EPFL) - Limitations of the Empirical Fisher Approximation
Frederik Kunstner (EPFL) · Philipp Hennig (University of Tübingen and MPI for Intelligent Systems Tübingen) · Lukas Balles (University of Tuebingen) - Unsupervised Scalable Representation Learning for Multivariate Time Series
Jean-Yves Franceschi (Sorbonne Université) · Aymeric Dieuleveut (Ecole Polytechnique, IPP Paris) · Martin Jaggi (EPFL) - UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization
Ali Kavis (EPFL) · Yehuda Kfir Levy (ETH) · Francis Bach (INRIA - Ecole Normale Superieure) · Volkan Cevher (EPFL) - Escaping from saddle points on Riemannian manifolds
Yue Sun (University of Washington) · Nicolas Flammarion (EPFL) · Maryam Fazel (University of Washington) - Coresets for Clustering with Fairness Constraints
Lingxiao Huang (EPFL) · Shaofeng Jiang (Weizmann Institute of Science) · Nisheeth Vishnoi (Yale University) - A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S Cohen (Qualcomm AI Research) · Mario Geiger (EPFL) · Maurice Weiler (University of Amsterdam) - GNNExplainer: Generating Explanations for Graph Neural Networks
Zhitao Ying (Stanford University) · Dylan Bourgeois (EPFL) · Jiaxuan You (Stanford University) · Marinka Zitnik (Stanford University) · Jure Leskovec (Stanford University and Pinterest) - Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias
Stéphane d'Ascoli (ENS) · Levent Sagun (EPFL) · Giulio Biroli (ENS) · Joan Bruna (NYU) - Fast and Provable ADMM for Learning with Generative Priors
Fabian Latorre Gomez (EPFL) · Armin Eftekhari (EPFL) · Volkan Cevher (EPFL) - A Domain Agnostic Measure for Monitoring and Evaluating GANs
Paulina Grnarova (ETH Zurich) · Yehuda Kfir Levy (ETH) · Aurelien Lucchi (ETH Zurich) · Nathanael Perraudin (Swiss Data Science Center - EPFL / ETH Zurich) · Ian Goodfellow (Google) · Thomas Hofmann (ETH Zurich) · Andreas Krause (ETH Zurich) - Learning Hawkes Processes from a handful of events
Farnood Salehi (EPFL) · William Trouleau (EPFL) · Matthias Grossglauser (EPFL) · Patrick Thiran (EPFL) - Provably robust boosted decision stumps and trees against adversarial attacks
Maksym Andriushchenko (University of Tübingen / EPFL) · Matthias Hein (University of Tübingen) - GOT: An Optimal Transport framework for Graph comparison
Hermina Petric Maretic (EPFL) · Mireille El Gheche (EPFL) · Giovanni Chierchia (ESIEE Paris) · Pascal Frossard (EPFL) - Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization
Viet Anh Nguyen (EPFL) · Soroosh Shafieezadeh Abadeh (EPFL) · Man-Chung Yue (The Hong Kong Polytechnic University) · Daniel Kuhn (EPFL) · Wolfram Wiesemann (Imperial College) - An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints
Mehmet Fatih SAHIN (EPFL) · Armin eftekhari (EPFL) · Ahmet Alacaoglu (EPFL) · Fabian Latorre Gomez (EPFL) · Volkan Cevher (EPFL) - PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels (EPFL) · Sai Praneeth Reddy Karimireddy (EPFL) · Martin Jaggi (EPFL) - Stochastic Frank-Wolfe for Composite Convex Minimization
Francesco Locatello (ETH Zürich - MPI Tübingen) · Alp Yurtsever (EPFL) · Olivier Fercoq (Telecom ParisTech) · Volkan Cevher (EPFL) - Efficiently Learning Fourier Sparse Set Functions
Andisheh Amrollahi (ETH Zurich) · Amir Zandieh (EPFL) · Michael Kapralov (EPFL) · Andreas Krause (ETH Zurich) - DeepWave: A Recurrent Neural-Network for Real-Time Acoustic Imaging
Matthieu Simeoni (IBM Research / EPFL) · Sepand Kashani (EPFL) · Paul Hurley (Western Sydney University) · Martin Vetterli (EPFL) - Distributionally Optimistic Optimization Approach to Nonparametric Likelihood Approximation
Viet Anh Nguyen (EPFL) · Soroosh Shafieezadeh Abadeh (EPFL) · Man-Chung Yue (The Hong Kong Polytechnic University) · Daniel Kuhn (EPFL) · Wolfram Wiesemann (Imperial College)
image by flickr.com/photos/gags9999