β-Cyclodextrin in Controlling Perovskite Solar Cell Performance

© 2024 EPFL/P. Ferdowsi

© 2024 EPFL/P. Ferdowsi

Supramolecular interactions are demonstrated to be key to enhancing performance and stability of triple cation perovskite solar cells.

In the context of perovskite solar cells (PSCs), enhancing device performance often involves adding a small excess of lead iodide (PbI2) to the precursor solution. However, the presence of unreacted PbI2 can lead to accelerated degradation compromising long-term stability. In a new study from LIMNO in collaboration with researchers from the Department of Nano Fusion Technology, Pusan National University this is addressed this through supramolecular complex engineering by introducing beta-cyclodextrin (β-CD) into a triple cation perovskite to effectively prevent the crystallization of residual PbI2. This approach results in uniform crystal growth and the passivation of undercoordinated lead cation defects. The use of β-CD leads to a PSC with an improved power conversion efficiency (PCE) of 21.36%, surpassing the control, and enhanced stability against aggressive thermal stress and high humidity (85% RH). This is supported by optical and morphological investigations, underscoring the role of β-CD to maintain the desired perovskite phase. Notably, in comparison to the β-CD-free control, the β-CD-treated sample exhibited minimal bandgap shifts of 3 meV after 1170 hours of moisture exposure. Furthermore, this method not only passivates unreacted PbI2 but also provides valuable insights into the role of β-CD in hybrid perovskite solar cells. Additional tests with maltose as a non-cyclic control were conducted and confirm the superior ability of β-CD to enhance perovskite film stability under harsh conditions. The formation of a supramolecular system between β-CD and perovskite holds promise as a strategy to control perovskite precursor chemistry, material structure, and subsequent device performance and stability.