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Abstract: Accurate prediction of wind turbine wakes is important for more efficient design and
operation of wind parks. Volumetric wake measurements of nacelle-mounted Doppler lidars are used
to characterize the wake of a full-scale wind turbine and to validate an analytical wake model that
incorporates the effect of wind veer. Both, measurements and model prediction, show an elliptical and
tilted spanwise cross-section of the wake in the presence of wind veer. The error between model and
measurements is reduced compared to a model without the effect of wind veer. The characterization
of the downwind velocity deficit development and wake growth is robust. The wake tilt angle can
only be determined for elliptical wakes.

Keywords: wind turbine wake; wind veer; Doppler lidar; field experiment; atmospheric boundary
layer; wake modeling; wake characterization; wind energy

1. Introduction

Renewable energy sources are important for satisfying future energy demands and mitigating
climate change. Limitations in the production capacity of a single wind turbine have led to wind
parks with multiple turbines clustered together. However, the interaction between the wind field and
the rotor blades of the wind turbine leads to a flow region of reduced kinetic energy and increased
turbulence levels downstream of the wind turbine [1]. This flow region, called the wake, can affect
other turbines negatively by decreasing their energy production and increasing their mechanical
wear [2,3]. Therefore, accurate prediction of the wake is of interest to design and operate wind parks.

Wind turbines are located within the atmospheric boundary layer (ABL), which is the lowest layer
of the atmosphere and is directly influenced by the underlying surface leading to larger temporal and
spatial variation of flow variables compared to the overlying free atmosphere [4]. In the context of
wind turbines, the vertical gradient of the wind speed (wind shear) and wind direction (wind veer)
within the ABL and their effect on the wind turbine wake is of special interest [5–11]. The effect of wind
veer resulting from the interaction between the synoptic scale pressure gradients, the Coriolis forces,
and surface friction can affect the wake recovery of large wind turbines [12,13]. Stable conditions can
enhance this wind veer [14] and strong wind veer can also result from katabatic flows in nocturnal
or stable ABLs (e.g., [15,16]). Field measurements with active remote sensing instruments showed
qualitatively [17,18] and quantitatively [19] that the wake shape is skewed in the direction of wind veer.

Low-order models describing the effect of wind veer on the wake are useful for optimizing wind
park layouts and developing turbine steering algorithms due to their short computation time [20].
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Validating those models at full-scale turbines with in-situ measurements is challenging due to the
variable wake position, its height above the ground and the considerable spatial volume to be covered.
Doppler lidars are actively scanning remote sensing instruments, which can sample the line-of-sight
with sufficient spatial and temporal resolution to resolve turbulence scales within the inertial subrange
of the ABL [21]. Several studies showed them to be viable instruments for investigating the wakes of
full scale wind turbines under a wide range of atmospheric conditions (e.g., [18,22–26]). Especially
nacelle-mounted Doppler lidars have the advantage of alignment with rotor axis independent of the
wind direction and favorable errors compared to a ground-based setup [27].

The objectives of this study are (i) to characterize the three-dimensional structure of
the longitudinal velocity field in the wind turbine wake from nacelle-mounted Doppler lidar
measurements, and (ii) to validate an analytical wake model that includes the effect of veer using
those measurements.

2. Methods

The measurement site and instrument setup described in this section is the same as the one
presented by Fuertes et al. in [26], but it is repeated here for completeness, and follows the post-processing
and wake-analysis methods employed. The measurements were conducted from 20 August 2017 to
16 October 2017.

2.1. Measurement Site

The wind turbine is located at the Kirkwood Community College campus in Cedar Rapids, Iowa,
United States. It is a 2.5 MW Liberty C96 model from Clipper Windpower with a rotor diameter of
D = 96 m and a hub height of zhub = 79 m. The optimal operating range of the turbine is at velocities
between 5 m/s and 10 m/s for which a power coefficient Cp = 0.37 was computed from the SCADA
data and a thrust coefficient Ct = 0.82 is assumed in absence of manufacturer data. The surrounding
area of the wind turbine is characterized by gentle rolling hills that do not vary more than 30 m from
the height of the turbine base. The two main wind directions (NW and SSE) cover the urban area of
Cedar Rapids to the northwest and agricultural fields to the south and east.

2.2. Meteorological Tower

A meteorological tower was located at a distance of 900 m south of the wind turbine. The tower
was equipped with cup anemometers and wind vanes at heights of 20 m, 32 m, 80 m, and 106 m above
the ground [28]. The cup anemometers used were A100LK from Campbell Scientific (Logan, UT, USA)
and the wind vanes used were NRG 200P from NRG Systems (Hinesburg, VT, USA). All instruments
were newly installed on the tower before the campaign. The wind speed profile (umt(z)) and the wind
direction profile (dirmt(z)) were used from their measurements. The data of the instruments at 32 m
boom is missing from the 23 September 2017—1010 UTC until the end of the campaign.

2.3. Doppler Lidar Setup

Two Stream Line Doppler lidars from Halo Photonics (Worcestershire, UK) were deployed on
the nacelle of the Kirkwood wind turbine. The steerable scanner head of this instrument emits a laser
pulse, which is scattered and Doppler shifted by aerosol in atmosphere. The backscattered light is
received by the instrument and the radial (line-of-sight) velocity is estimated from the Doppler shift.
The travel time of the signal provides the distance information. The laser wavelength (1.5 µm) is in the
near infrared with a pulse repetition frequency of 10 kHz. A range gate length of 18 m was used with
3000 (5000) samples per estimate for the scans (stares). One Doppler lidar was measuring the inflow
upwind of the turbine and the second the wake downwind of the turbine.
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2.3.1. Inflow Scanning

The inflow scanning Doppler lidar performed a repeating scan schedule of 30-min period that
consisted of four scan types (a detailed description is provided in [26]):

1. A Plan Position Indicator (PPI) scan at hub height covering azimuth angles ±60◦ from the rotor
axis with 28 sweeps in 6 min. The yaw angle (γppi) and the incoming wind speed (uhub) at hub
height were estimated from these scans.

2. A Range Height Indicator (RHI) scan in the rotor axis covering elevation angles ±15◦ from the
horizontal with 28 sweeps in 6 min. The vertical profiles of the inflow wind speed (uin(z)) and
longitudinal turbulence intensity (TIRHI(z)) were derived from these scans.

3. A staring beam in longitudinal and transversal direction at hub height for 9 min each. They
yielded the yaw angle (γst), the incoming wind speed at hub height (ust), and the longitudinal
and transverse turbulence intensity (TIst,x and TIst,y).

The redundancy in the determination of the yaw angle (γppi and γst) and the incoming wind speed
at hub height (uhub, uin(zhub) and ust) is used for stationarity tests in the quality assurance (Section 2.6).

2.3.2. Wake Scanning

The wake scanning Doppler lidar scanned successive PPI scans with an azimuth range of 165◦

to 195◦ with an azimuth step of 2◦ and an elevation range of −15◦ to 15◦ with an elevation step of
3◦ (Figure 1). This scan pattern was repeated 24 times within a 30-min period.
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Figure 1. Path of the scanner (blue line) and measurement points (blue points) for the volumetric scan
pattern with the outline of the rotor area (red line) at a distance of x/D = 3.

The measured line-of-sight velocities were mapped on a regular spherical coordinate system with
a grid resolution corresponding to the azimuth and elevation steps of the scans and a temporal average
was applied to gain the mean radial velocity (rv(el, az, r)). Then a provisional mean longitudinal
velocity was computed with

up(el, az, r) =
rv(el, az, r)

cos(az− γppi) cos(el)
(1)
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and interpolated on a regular Cartesian grid with a resolution of 10 m yielding up(x, y, z).
The subscripted “p” indicates that it is a provisional mean longitudinal velocity, because the yaw angle
of the turbine and the wind veer will introduce a bias that is corrected in the following. The resolution
of the spherical grid also mitigates in part the effects of turbine vibrations and rocking on the beam
positions of the Doppler lidar.

Assuming horizontal homogeneity of the flow outside of the wake, the effect of wind shear and
wind veer on the velocity deficit is corrected in approximation with a linear profile of the inflow at
each height. The longitudinal velocity deficit is then given by

∆u(x, y, z) =
ule f t(z)− uright(z)
yle f t(z)− yright(z)

y +
ule f t(z) + uright(z)

2
− up(x, y, z) (2)

with

ule f t(z) = up(6 ≤ x/D ≤ 10, y/D ≥ 1.5, z), (3)

uright(z) = up(6 ≤ x/D ≤ 10, y/D ≤ −1.5, z), (4)

and yright(z) and yle f t(z) the average y coordinate of the data points. The range 6 ≤ x/D ≤ 10 was
chosen, because measurements with |y/D| > 1.5 only exist for x/D ≥ 6 due to the maximum azimuth
angle of the scan pattern. Using the minimum velocity of a spanwise cross-section as done by Iungo
and Porté-Agel in [29] is not sufficient for analyzing the whole wake region. Correcting the yaw angle
and subtracting up(x, y, z) from the inflow wind speed at hub height to compute the velocity deficit as
done for planar scans at hub height by Fuertes et al. in [26] would introduce a bias at z 6= zhub due to
wind shear and wind veer (Figure 2).
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Figure 2. Biases of the velocity deficit resulting from beam geometry and wind veer. The example was
computed for z = zhub − 40 m with an assumed inflow with a wind speed of 5 m s−1 and a wind veer
of 0.25◦ m−1. Neglecting a correction of the azimuth and elevation angles (red line—i.e., applying
only Equation (1)) and neglecting the effect of wind veer (black line—i.e., applying Equation (2) on the
radial velocities) will introduce a bias compared to Equation (2) (blue line). The effect of wind shear
would manifest as a constant offset.

2.3.3. Wind Shear and Wind Veer

Similar to the computation of the longitudinal velocity deficit, the wind shear and wind veer can
be estimated in approximation from the measurements of the wake scanning Doppler lidar with

uw(z) =
1
2
(ule f t(z) + uright(z)) (5)

and
dirw(z) = tan−1(ule f t(z) + uright(z)). (6)
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For the 30-min periods that passed quality assurance (see Section 2.6), a comparisons with uin(z)
and umt(z) showed that uw(z) had an absolute mean error of less than 0.5 m s−1 across all heights
where comparison was possible. Comparison of dirw(zhub) with γppi showed a mean absolute error
of 2.6◦, which translates to an error of 0.027◦ m−1 for the wind veer across the rotor region and
comparison of dirw(z) with dirmt(z) showed a mean absolute error of 3.6◦ or 0.037◦ m−1. However,
those errors include errors arising from the spatial separation of the measurements and temporal
averaging difference (the wake measurements are averaged over 30 min and the inflow measurements
only 6 min). In the following, the wind veer (ϕw) is defined by the slope of a linear fit to dirw(z) in the
region 0 ≤ z/D ≤ 1.

2.4. Volumetric Wake Analysis

The aim of the wake analysis is to characterize the wake structure with a small set of parameters.
To this end, the method of fitting a Gaussian to the velocity deficit introduced by Fuertes et al. in [26]
for planar scans was extended for volumetric measurements by fitting a 2D-Gaussian function to
spanwise (y-z) cross-sections of the wake at downwind distances of 2 ≤ x/D ≤ 10. The 2D-Gaussian
function is given by

∆u(y, z) = C exp(−a(y− y0)
2 + 2b(z− z0)(y− y0) + c(z− z0)

2) (7)

where

a =
cos2(α− 90)

2σ2
y

+
sin2(α− 90)

2σ2
z

, (8)

b =
sin(2(α− 90))

4σ2
y

+
cos(2(α− 90))

4σ2
z

, (9)

and

c =
sin2(α− 90)

2σ2
y

+
cos2(α− 90)

2σ2
z

(10)

with the amplitude C (m s−1) as the maximum velocity deficit, the standard deviations σy and σz (m)
giving the wake width along the principle axes, the wake deviation from the rotor centerline y0 and
z0 (m), and the wake tilt angle α (deg) between the vertical and the major axis of the wake (Figure 3).
The trigonometric functions have the argument α− 90 to agree with the geometry shown in Figure 3.
The fit uses a weighted non-linear least square regression with a weighting function that corresponds
to 50% increased standard deviations. Initial values at x/D = 2 were C = 3, σy = σz = 50, y0 = z0 = 0,
and α = 90 and for x/D > 2 the results of the previous cross-section were used as initial values.
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Figure 3. Schematic of the 2D-Gaussian fit function. The red line shows a contour line of the velocity
deficit with the fit parameters in blue. The coordinate system is a right-hand Cartesian system with the
x-axes pointing from the wind turbine in the downwind direction. The cross-section view has positive
y values to the right and corresponds to an observer standing downstream of the turbine looking
towards the turbine (i.e., looking against the direction of the x-axis). The schematic illustrates a tilted
wake for clock-wise rotation of the wind direction with height, which is common in the ABL.

2.5. Wake Model with the Effect of Wind Veer

Abkar et al. developed an analytical model for the mean longitudinal velocity deficit in the
wake region in the presence of vertical wind veer [30]. The basis of this model is a mass- and
momentum-conserving model [31], which was extended to incorporate a skewing of the wake due to
a lateral velocity component caused by the wind veer. The model is given by

∆umod(x, y, z) = ∆umax exp

(
1
2

[(
y− y0 + x tan ϕ(z)

σy

)2

+

(
z− z0 − zhub

σz

)2
])

(11)

with

∆umax =

(
1−

√
1− Ct

8(σyσz/D2)

)
uhub, (12)

σy = k∗y(x− x0) +
D√

8
, σz = k∗z(x− x0) +

D√
8

, (13)

and

x0 =
1 +
√

1− Ct√
2(α∗TIx,st + β∗(1−

√
1− Ct)

D, (14)

where ϕ(z) = ϕwz is the incoming wind angle across the rotor region, Ct is the thrust coefficient
introduced in Section 2.2, and k∗y and k∗z are wake growth rates for the lateral and vertical direction, x0

is the length of the near wake, and α∗ = 2.32 and β∗ = 0.308 in analogy with jet flows [32]. Similar
wake growth rates in lateral and vertical directions that follow a linear relationship with TIx,st are
assumed following common practice in analytical modeling [33]. The growth rates are then given by

k∗y = k∗z = a TIx,st (15)

with the constant parameter a that will be determined later as a = 0.30 in Section 3. In order to
isolate the effect of wind veer for the comparison with the measurements, we use y0 and z0 from the
2D-Gaussian fit to remove effects of the wake deviation from the centerline.
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2.6. Quality Assurance

Quality assurance followed a two-step procedure. The first part is a programmatic filtering
following the criteria outlined in Fuertes et al. (2018) that rejects data if the inflow has a non-stationary
wind speed (by comparing uhub, ust, uin(zhub), and umt(80 m)), a non-stationary wind direction
(by comparing γppi and γst or a change in the orientation of the turbine), a non-stationary turbulence
intensity (by comparing TIst,x and TIRHI(zhub)), or a Doppler lidar signal-to-noise ratio (SNR) below
−16 dB . Further rejected were 30-min periods with a wind speed outside of the optimal operating
range of the turbine or if the rotor axis was not aligned with the wind direction (γppi > 5◦ or γst > 5◦).
The successful 30-min periods were then subjected to a visual inspection of the raw data to reject
intervals with (i) an horizontally inhomogeneous flow outside of the wake, (ii) an influence of the
wake on the regions |y/D| > 1.5, (iii) hard targets within the scan area, or (vi) a too short range of the
wake scanning Doppler lidar. Lastly, 30-min periods were rejected if the coefficient of determination of
2D-Gaussian fit was below 0.96 throughout the fitted volume.

3. Results and Discussion

The data set consists of 847 30-min periods with volumetric wake measurements between the
20 August 2017 and the 16 October 2017 of which 88 passed the first step of the quality assurance.
From those 88 30-min periods, we accepted 25 in the second step of the quality assurance. This results
in a validity rate of 3%, which is lower than the validity rate of 6% found by Fuertes et al. (2018) for 2D
scans during the same time. This is primarily due to the more complex volumetric scan pattern, which
required more strict data filtering criteria. The reduced SNR due to the usage of 3000 pulses per ray
instead of 5000 might have an effect on the validity rate as well. The remaining intervals cover weak to
medium turbulence cases (TIst,x < 0.15).

Figure 4 shows two examples of the longitudinal velocity deficit retrieved from the measurements.
The first example features a case with weak wind veer (Figure 4a–c) and the second example a case
with strong wind veer (Figure 4d–f). An increased tilt angle and a more elliptical shape of the wake can
be visually observed from the measurement data and the 2D-Gaussian fit in the strong wind veer case
compared to the weak wind veer case (Figure 4c,f). These qualitative observations will be investigated
systematically and extended in the following paragraphs. Further, the model given by Equation (1),
whose predictions are also shown in Figure 4c,f, will be evaluated, too. For this purpose, we will
concentrate on the region of 4 ≤ x/D ≤ 8 downwind of the turbine. This region was chosen because
for x/D < 4 the field of view of the scan is too narrow to cover whole wake leading to an uncertain fit
of the Gaussian (which we defined as an R-squared value below 0.96) and for x/D > 8 the rejection of
measurement data with a SNR < −16 dB led to gaps in the data in some cases.

First, the wake growth and the velocity-deficit recovery with downwind distance from the turbine

are analyzed. The equivalent wake width σeq(x) =
√

σy(x)σz(x) is used to estimate the wake growth
for an elliptical wake from the 2D-Gaussian fit [12]. The equivalent wake growth rate k∗eq was estimated
from σeq(x) with a linear fit for 4 ≤ x/D ≤ 8. The found relationship k∗eq = 0.30TIx,st agrees with
the findings for planar horizontal scans during the same period (Figure 5a). The faster wake growth
at high turbulence intensities due to the stronger entrainment of momentum into the wake is well
established in literature (e.g., [22]). The slight underestimation compared to the planar horizontal scans
is within the 95% confidence bounds of the linear fit. Previous numerical [33] and experimental [26]
studies have shown that k∗eq increases approximately linearly with TIx,st for moderate to high TIx,st.
However, the linear relationship between wake growth and ambient turbulence levels might not be
valid at very low turbulence levels (TIx < 0.06 according to [33]), because it only accounts for wake
growth from ambient turbulence, but not for wake growth from turbulence created by the wind turbine
itself. This interpretation is supported by the positive residual of the linear fit at small TIx,st (Figure 5b)
and is in line with findings from large-eddy simulations (Figure 5a). Notwithstanding, it is possible
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that k∗eq = 0.30TIx,st holds for sufficiently large TIx and at small TIx the wake growth rate obeys to
a different regime (e.g., levelling off to a constant value or depending on wind turbine parameters).
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Figure 4. Example cases of volumetric wake measurements for weak wind veer (a–c) and strong wind
veer (d–f). The left column (a,d) shows the wind direction profile of the inflow, the middle colum (b,e)
a horizontal cross section of the longitudinal velocity deficit at z/D = 0, and the right column (c,f) a
vertical cross section of the longitudinal velocity at a distance of x/D = 6. The red lines in vertical
cross section show contours of the 2D-Gaussian fit (Equation (7)) and the black line a contour line of
the prediction by the wake model (Equation (11)).

Based on the relationship of k∗eq = 0.30TIx,st, the velocity deficit is predicted with the far-wake
model and compared with the measurements (Figure 6). The model agrees well with the measurement
data for the weak wind veer case, but shows major deviations for the strong wind veer case (Figure 6a,b).
The case with strong wind veer had a turbulence intensity of only TIx,st = 0.03, for which the model
presumably underestimated the wake growth due to turbulence created by the wind turbine as
mentioned above. Using the wake growth parameters and near-wake length estimated for this period
by the 2D-Gaussian fit shows better agreement (Figure 6b). The measured velocity deficit agrees on
average for all 30-min periods with the model, but for individual cases the model can exhibit deviations
of up to 15% of the incoming velocity at hub height from the measurements (Figure 6c).

In Figure 4, it was qualitatively observed that the wake appears more elliptical for the case with
strong wind veer compared to the case with weak wind veer. This is quantified by investigating the
relationship between the wind veer and the ratio of the minor wake width (σs) to the major wake
width (σl) as a measure of the wakes circularity. The ratio of the wake widths was determined from
the 2D-Gaussian fit with

σs

σl
=

{
σy/σz, for σy < σz

σz/σy, for σy > σz

and averaged over 4 ≤ x/D ≤ 8. The distinction of the two cases is necessary, because it was observed
that the 2D-Gaussian fit could rotate by 90◦ and swap its principle axes if σx ≈ σy (an example is shown
in Appendix A). Figure 7 shows that the ratio of two principle axes of the Gaussian fit approaches
unity for weak wind veer indicating a more circular shape of the wake and decreases for strong wind
veer indicating a more elliptical shape of the wake. The analytical model prediction for the principle
axes ratio shows agreement with the measurements (Figure 7). This effect can be explained by the
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fact that the transversal wind component associated with wind veer advects the wake in opposite
directions below and above the hub height [30].

Next, it is investigated whether the tilt angle of the wake increases with increasing wind veer and
how it develops with the downwind distance from the turbine. The 95%-confidence interval of the
wake tilt angle increases for decreasing wind veer (Figure 8a), because the wake tilt angle is ambiguous
for a circular wake. For the cases with a confidence interval smaller than 25◦, the mean wake tilt angle
increases with the wind veer and the data points scatter around the model prediction (Figure 8b).
Large eddy simulations of a stable boundary layer with a wind veer of 0.165◦ m−1 across the ABL had
an average α of 59◦ for 4 ≤ x/D ≤ 8 [12], which is lower than the closest measurement of this data set
(α = 62◦ for a wind veer of 0.14◦ m−1), but within the confidence interval. Further, an increase of α

with increasing downwind distance from the turbine is expected [12]. The downwind development of
the wake tilt angle was estimated from the slope a linear fit to the wake tilt angle for 4 ≤ x/D ≤ 8. The
expected increase is not recovered from the measurement data (Figure 8c), because the aforementioned
uncertainty of the fitted α leads to errors that can be more than twice as high as the expected trend.
This serves to illustrate the limits of the wake characterization with this method for the case of the
wake tilt angle.
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Figure 5. The upper panel (a) shows the (equivalent) wake growth rate k∗eq as a function of
the streamwise turbulence intensity TIx,st. The blue crosses show results from the volumetric
measurements and the red dashed line a linear fit with k∗eq = 0.30TIx,st. The black dashed line
shows the result from planar wakes scans during the same experiment presented by Fuertes et al. [26]
and the black squares show the results of large-eddy simulations by Wu and Porté-Agel [34]. The lower
panel (b) shows the residuals of the linear fit (blue crosses) as a function of the turbulence intensity
together with a moving mean spanning 7 data points (red line).
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Figure 6. Recovery of the normalized velocity deficit with downwind distance from the wind turbine
for the weak wind veer case (a) and the strong wind veer case (b) introduced in Figure 3. Blue crosses
show the maximum velocity deficit estimated from the amplitude of the 2D-Gaussian fit to the lidar
measurements. The prediction of the wake model is shown as a black line. The strong wind veer
case (b) additionally shows the model prediction with the wake growth rate (red dash-dotted line)
and near-wake length (red dashed line) estimated from the wake characterization. The right panel
(c) shows the amplitude error of the model for each 30-min period (black dotted) and the ensemble
median (blue line). The two cases of (a,b) are highlighted as black dash-dotted lines in (c). The median
was used, because x0 > x/d = 4 for some 30-min periods leading to discontinuities in the mean value.

Lastly, it is investigated how including the effect of wind veer in the analytical model affects the
error of the model. Therefore, the root-mean-square error (RMSE) between model and measurement
was computed for the volume 4 ≤ x/D ≤ 8, −0.75 ≤ y/D ≤ 0.75 and −0.5 ≤ z/D ≤ 0.75. The model
without the effect of wind veer (Equation (11) with α = 0) has an average RMSE of 0.95 m s−1 or 9%
based on the incoming velocity at hub height compared to the measurement data. For comparison, the
2D-Gaussian fit has an average RMSE of 0.28 m s−1 or 2.5% of the incoming velocity at hub height.
The model including the effect of wind veer has a slightly lower average RMSE of 0.85 m s−1 or 8%.
However, Figure 9 shows that the error reduction by including the wind veer in the model increases if
the wake is more elliptical. This behaviour is expected from Equation (11) given that circular wakes
are connected to weak wind veer (Figure 7) and it can be concluded, that only strong wind veer has
a pronounced effect on the wake. Moreover, the analytical model that includes the effect of wind veer
could reduce the errors for strongly elliptical wakes to the same level as for circular wakes.



Remote Sens. 2019, 11, 2247 11 of 15

0 0.05 0.1 0.15 0.2 0.25 0.3

Wind veer [deg  m-1]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

s / 
l

2D-Gaussian fit
Model (Eq. 11)

Figure 7. The mean ratio of the minor (σs) to major (σl) semi axis of the wake averaged for 4 ≤ x/D ≤ 8
as a function of the wind veer. Blue crosses show the measurements and the red line shows the
wake model prediction (Equation (11)). Encircled crosses indicate data points where α rotated by 90◦

(see Appendix A).
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Figure 8. Confidence interval of the wake tilt angle αci (a), mean wake tilt angle α (b) and slope sα of
a linear fit of α over x (c) as a function of wind veer. The upper ordinate limit of the left panel (a) excludes
three values. Blue diamonds indicate data points with a 95% confidence interval of α smaller than 25◦

and black pluses data points with a confidence interval larger than 25◦ (see black-dashed line in (a)).
The red lines in (b,c) show the corresponding prediction of the wake model (Equation (11)). Encircled
data points indicate where the 2D-Gaussian fit rotated by 90◦ (see Appendix A).

The shown results are subject to errors that are quantified and discussed in the following.
The velocity deficit field derived from the Doppler lidars can be subject to averaging and interpolation
errors and errors arising from a violation of the stationarity assumption. The averaging and
interpolation errors were estimated to be below 1.9% of the inflow wind speed at hub height on average,
with a maximum of 7.1% [27]. Non-stationarity was minimized with rigorous quality assurance as
described in Section 2.6. The degree of the remaining non-stationarity is estimated from the range
of mean values during sub-periods of the investigated 30-min periods. The mean range between
γppi and γst is 1.9◦ (maximum 2.9◦), 0.8% (maximum 3.2%) for TIst,x and TIRHI(zhub), and 0.36 m s−1

(maximum 0.85 m s−1) for uhub, ust, uin(zhub), and umt(80 m). Non-stationarity—especially of the
wind direction—can bias the estimated wake growth rates and recovery of the velocity deficit with
downwind distance. We assume that the effect of the remaining non-stationarity on the results is small,
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because in the case of uhub the variability is considerably smaller than the smallest absolute values
(see Section 2.6) and in the case of TIst,x the variability is small compared to the range of values used
to estimate the relationship with k∗eq (see Figure 5). In the case of γppi the variation is mitigated by
the grid resolution of the wake characterization. On the model side, errors of uhub will directly lead
to an error of the maximum velocity deficit (Equation (12)) affecting the whole wake region, errors
of TIst,x will result in an over- or underestimation of the velocity deficit with increasing downwind
distance, and errors of the wind veer will lead to a wrong tilt angle and subsequently a wrong spatial
position of parts of the wake (this does not imply that input parameters without errors would provide
a perfect prediction). All of those effects will lead to an increased RMSE in Figure 9.
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Figure 9. Percentage of the error reduction between model and measurements by including the
effect of wind veer to the model as a function of the wake’s circularity (a) and the reduction of the
root-mean-square-error (b). Percentage values are based on the error of the model without the effect of
wind veer.

4. Summary and Conclusions

It was demonstrated that volumetric measurements of the longitudinal velocity deficit with
nacelle-mounted Doppler lidars are feasible in practice and methods for wake characterization were
presented. Fitting a 2D-Gaussian function to spanwise cross-sections of the wake characterized it
in terms of amplitude, widths, and tilt angle as well as the development of those parameters with
the downwind distance from the turbine. The wake characterization required temporal stationary
and horizontally homogeneous conditions, which was satisfied for 3% of the data in this study.
The characterization of the amplitude and widths was reliable, but the wake tilt angle could only be
determined for an elliptical wake shape and its downwind development is prone to errors. Further,
it is emphasized that the vertical structure of the inflow, especially the wind shear and wind veer, is
essential for retrieving the velocity deficit from volumetric measurements and should be accounted for
in the scan design or by using additional instruments.

In agreement with simulations and wind tunnel experiments, we observed a skewed and tilted
wake in the presence of wind veer. It was shown that the wake becomes more elliptical and tilted
for increasing wind veer as expected from theoretical considerations. Improved agreement between
measured velocity deficit and an analytical wake model was found if the effect of wind veer is included
in the model. If strong wind veer is present, the RMSE between model and measurements is reduced
by up to 34% compared to a model without the effect of wind veer. Including the effect of wind veer in
the analytical model reduced the errors for elliptical wakes to the same level as for circular wakes.
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Abbreviations

The following abbreviations are used in this manuscript:

ABL Atmospheric Boundary Layer
PPI Plan Position Indicator
RHI Range Height Indicator
SNR Signa-to-noise ratio
RMSE Root-mean-square error

Appendix A

An example of a 2D-Gaussian fit to the longitudinal velocity deficit with approximately equal
major and minor axis is shown in Figure A1. For such cases, the 2D-Gaussian fit can arbitrarily rotate
by 90◦ and α has large confidence bounds indicating the weak certainty. These cases are connected
to weak wind veer and highlight a problem with fitting Equation (7) in cases without a pronounced
elliptical shape. However, fit parameters other than α were unaffected by this problem (e.g., wake
depth or wake width).
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Figure A1. Example of a 2D-Gaussian fit to spanwise cross-sections of the velocity deficit rotating by
90◦ for a nearly circular wake (8 September 2017—2200 UTC). The top two panels show cross-sections
of the longitudinal velocity deficit at x/D = 6 and x/D = 8 together with contour lines of the
2D-Gaussian fit. The bottom row shows the tilt angle of the wake (α) on the left and the ratio of the
ellipse axes σy/σz on the right.
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