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Background

Next Steps

Scalar fields 𝜌 𝒓 	of interest

Modular software ecosystem
/luthaf/rascaline

• Evaluating structural representations
• Work-in-progress: Python-API for Clebsch-Gordan 

iterations. Later: learnable representations?

End-to-end workflow for 𝜌-learning
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environments

3.
Rotational symmetrisation

and/or Clebsch-Gordan iterations

…

Building equivariant descriptors Generating learning targets
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• General expression for constructing a 

scalar field from KS-orbitals
• KS-orbital weights 𝑊 𝑎  dictate the 

specific scalar field

• Real-space scalar field decomposed 
onto a fitted basis

• {𝑑!"#} are the equivariant ML targets

FHI-aims extension for constructing scalar fields 

Generating learning targets – RI fitting
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/lab-cosmo/metatensor

rho_learn demo:
à end-to-end learning of the 

HOMO in gas phase water, 
integrated with FHI-aims

• Sparse storage format for atomistic data
• Lingua franca for building end-to-end ML workflows
• Operations for manipulating data + metadata

/jwa7/rho_learn

• Custom metatensor/PyTorch modules for 
equivariant learning of scalar fields and tensors

• Integration with FHI-aims: calculators + parsers 
• Gradient-based model training

• Reduced memory-requirements, scalable
• Models of arbitrary complexity (i.e. NNs)

• ML surrogate models for DFT can bypass the Kohn-Sham equations 
with more favourable scaling

• Scalar fields derived from Kohn-Sham orbitals can be useful 
learning targets à accelerating DFT, probing electronic structure

• Equivariant learning of schemes built atop a modular software 
stack allow different scalar fields to be flexibly targeted at scale

• This can be applied to quantities such as the LDOS for STM imaging
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• Scanning tunnelling microscopy (STM) à experimental 
technique to probe the electronic structure of materials 

• Surface STM images à 2D contour plots of the local 
density of states (LDOS) resolved at Fermi energy 𝜖!

• Target scalar field: integrated LDOS with KS-orbital 
weighting:
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• Considerations: energy alignment and long-range effects

1. LDOS-learning for STM image generation of Si surfaces and beyond
2. Make rho_learn fully torch-scriptable for shippable models 
3. Further integrate rho_learn with FHI-aims for derived quantities + DFT 

acceleration
4. Unify ML-infrastructure for electronic structure surrogate models à 

different targets, different QC codes

Training a modelApplication: ML-driven STM imaging

STM experiment setup. 𝑒! tunnel 
between tip and material surface

DFT reference 2D slice of 
the ILDOS of a Si (100) slab
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metatensor: data interchange format
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• Descriptor and target decomposed in the 
angular basis à equivariant learning with 
model for each species and 𝑙-channel

• Non-orthogonal RI-basis à all {𝑑'()} are 
coupled à overlap matrix, 0𝑺, required for 
loss evaluation (memory intensive!)

ℒ = Δ)𝒅 + ,𝑺 + Δ)𝒅

• Use of nonlinearities can improve model 
performance

Converge SCF, define 𝑊 𝑎 , 
run RI-fitting procedure

Incorporating nonlinearities into the model. Invariant blocks are passed through a 
multi-layer perceptron and used as a nonlinear multiplier for equivariant blocks. /jwa7/rho_learn


