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Background Scalar fields p(r) of interest

ML surrogate models for DFT can bypass the Kohn-Sham equations p (1‘) = electron density i D (T, a’) = KS-orbital d ensity : D (1‘, E) = LDOS
with more favourable scaling _ __occ : . |
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learning targets - accelerating DFT, probing electronic structure ! : _
Equivariant learning of schemes built atop a modular software | i Si slab
stack allow different scalar fields to be flexibly targeted at scale ; :
- : " N | H,0 - LUMO ., Resolved around
This can be applied to quantities such as the LDOS for STM imaging ! 2 .
| ! Fermi energy
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* Evaluating structural representations FHI-a1ms extension for constructing scalar fields

* Work-in-progress. Python-API for Clebsch-Gordan _ _
* General expression for constructing a

iterations. Later: learnable representations?
_ scalar field from KS-orbitals
O /1ab-cosmo/metatensor p(r) — Z l 2 W(a) Cij (@)| i () ¢J’ () . . .
oo L o ERéo « KS-orbital weights I/ (a) dictate the
* Sparse storage format for atomistic data ' specific scalar field

» Lingua francafor building end-to-end ML workflows
e Operations for manipulating data + metadata
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Generating learning targets - Rl fitting
* Real-space scalar field decomposed

; RI RI onto a fitted basis
Metadata Properties | % | | r)~= r) = d r
c:mpm:ts o 4 — ] p(r) = p(r) Zb: > ¢p(T) *  {d}'} are the equivariant ML targets
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metatensor: data interchange format Building equivariant descriptors Generating learning targets
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rho_1learn demo:

* Models of arbitrary complexity (i.e. NNs)

] L RN @ i
0 /jwa7/rho_learn s ‘o ® i .‘:‘.‘
« Custom metatensor/PyTorch modules for ( \\\\\ i FHI Qe!binitio rie,ia.s
- - . . =0 : simulation package
equivariant learning of scalar fields and tensors W/ !
* Integration with FHI-aims: calculators + parsers L ® < =1 | Converge SCF, define I/ (a),
* Gradient-based model training XX v i run RI-fitting procedure
* Reduced memory-requirements, scalable 0 00668 _g;gégg 00057 =2 i
L 2 3 i — end-to-end learning of the
Nuclear coordinates Local atom-centered Rotational symmetrisation i
& atom types environments and/or Clebsch-Gordan iterations HOMO in gas phase water,

integrated with FHI-aims

Application: ML-driven STM imaging

Training a model

( multi-layer perceptron \
/ Jnear  monlinear  linear Jnoar \  Descriptor and target decomposed in the
invariant input  hidden  hidden output invariant . . . . .
block multiplier angular basis 2 equivariant learning with
< - ' ' > model for each species and [-channel
»  Non-orthogonal Rl-basis = all {d}'} are
\ \ / y coupled - overlap matrix, S, required for

Material surface

Describt Predicted loss evaluation (memory intensive!)
STM experiment setup. e~ tunnel DFT reference 2D slice of escriptor redicte
between tip and material surface the ILDOS of a Si (100) slab & Jinear Hement-wise tnoar T‘:{éft _ N
eqlz;,::f”t input product L — A d . S . A d
Scanning tunnelling microscopy (STM) = experimental » =5
technique to probe the electronic structure of materials © . e _
1 P » * Use of nonlinearities can improve model
Surface STM images = 2D contour plots of the local _ v _ performance
_ ) Incorporating nonlinearities into the model. Invariant blocks are passed through a O . h 1
density of states (LDOS) resolved at Fermi energy ¢ F multi-layer perceptron and used as a nonlinear multiplier for equivariant blocks. / J Wa7/ rno_iearn

Target scalar field: integrated LDOS with KS-orbital
weighting: Next Steps
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e+V . LDOS-learning for STM image generation of Si surfaces and beyond

Wi(a, e V) = z g(e —€,) . Make rho_1earn fully torch-scriptable for shippable models
o “ Further integrate rho_learn with FHI-aims for derived quantities + DFT

acceleration

. . ) . Unify ML-infrastructure for electronic structure surrogate models >
Considerations: energy alignment and long-range effects different targets, different QC codes
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