

Fixed-Wing Micro UAV Open Data

with digiCam & raw INS/GNSS

Jan Skaloud, Davide A. Cucci, Kenneth Joseph Paul

ISPRS 2021 Virtual Congress Commission I, WG I/9

5 July 2021

Motivation

New practices

- integrated sensor orientation
- camera/system calibration
- R-IMU setup / pre-calibration
- autonomous navigation

- Open reference
 - benchmarking methods
 - comparing software

Agenda

- 1. Platform and payload
- 2. System calibration
- **3.** Missions
- 4. Data access, formats & organization

Platform and payload – Aircraft & GNSS

- Plane
 - Mentor Multiplex (Elapor foam), 1.6 m wing-span, 2.7 kg TOW
 - Pixhawk FMU 2 with (custom) Ardupilot (< 2020)</p>
- GNSS
 - Topcon B110 dual freq. GPS / GLONASS at 10 Hz (< 2020)
 - Master 1: Javad Triump2A dual freq. GPS/GLONNAS at 10 Hz
 - Master 2: VRS at 1 Hz

Platform and payload – CAM & INS

- Camera
 - camLight from IGN (French mapping agency)
 - Full frame CMOS, 6 um/pix, 12 bits panchro, *.tiff
 - Zeiss Biogon 35 mm, f 2.8 prime lens
 - Shutter 1/5000 s: blur < 3 mm for 12 mm GSD</p>

🗖 R-IMU

- 2x Navchip V1 IMUs @ 500 Hz
- With 2x 3 axes magnetometer
- High res. Barometer
- PPS sync sampling rate
- Time tagging
 - All in GPS time, negligible jerk

NAV

Flight direction

System calibration

- Lever-arm
 - Method: Rehak & Skaloud, 2015
 - Camera -> antenna, std ~ mm, level in camera frame
 - Camera -> IMU, in camera fram from CAD design, std ~ mm
- 🗆 IMU
 - Method: Clausen & Skaloud, 2020: non-orthogonalities, const. scale factors and const. in-field random biases

System calibration

Lens

- Close range ~50 signalized "aruko-targets", photos with converging geometry
- In-flight (large block)
- Comparison of models Cledat et al. 2020 (young author award)
- Indepenent study conducted by IFP, U. Stuttgart (M. Cramer)

Boresight

In-flight (large block)

Missions – test zone

Ground control

- 40 signalized points 30 x 30 cm
- ~1-2 cm accuracy, ~40 min static GNSS
- For auto centering (~ 0.1 0.05 pix)

Missions

- Close range (no EO)
- Large block (40 min)
- Long corridor (2 km)
- 2 flight levels, 100-180 AGLSharp images

Open data

- Repository
 - Zenondo
 - CC-BY 4.0 license

Access

3x ref. Skaloud et al. 2021a, b, c

<u>https://doi.org/1</u> 0.5281/zenodo.4 705380 Zenodo search

Upload Communities

April 20, 2021

Fixed-Wing Micro UAV Open Data With Digicam And Raw INS/GNSS - IGN Flight 6

0

3 Skaloud, Jan; 3 Cucci, Davide Antonio; 3 Joseph Paul, Kenneth

The data set originate from a series of flights conducted with fixed-wing micro UAV carrying high-quality small camera and navigation sensors. This data was previously used in several peer-reviewed publications and will also be used in ISPRS workshop on dynamic networks given during the 2021 ISPRS Congress. This is part of a larger series of data that will be released gradually after incorporating user's feedback (e.g., on formats, description, etc.). The data set contains the sensor measurements from GPS, IMU and Camera.

Preview	~	
🗈 ign6XL zip	×	
 ign6XL DS_Store D1_Observations DS_Store Comera Data Events.txt 	6.1 kB 6.1 kB 6.5 kB	
 CPsimg_coordinates.bd WGS84.bd WGS84_local_plane.bd Images MO1.bf 	8.4 kB 2.2 kB 2.6 kB 19.7 MB	

<u>:oordinates.txt</u>

sentplane.txt

🗆 Γυιπαιδ

	Data	Format
Sensors	GPS	RIINEX 2.11
	IMU	.CSV
	Camera	.tif,.txt
Auxiliary	GCPs	.txt
	Trajectory, EO	.txt

□ Structure

- 01_
- 02_

Conclusions

- Access to high quality data with reference is not obvious to test "new methodologies" (tieintegration of all raw data, error modeling, long corridors, challenging geometry, etc.)
- First 3 data sets from more ...
- Goal: bench-marking traditional approaches & faster testing of newer and improved concepts.

Zeiss Biogon: L1006467_f16.tif

Data use examples

R-IMU calibration

Clausen, P., Skaloud, J., 2020. On the calibration aspects of <u>MEMS-IMUs used in micro-UAVs for sensor orientation</u>. Proceedings of IEEE-ION Position Location and Navigation Symposium (PLANS), Portland, OR, USA

Camera models

Cledat, E.; Cucci, D. A., Skaloud, J. <u>Camera calibration models</u> <u>and methods in corridor mapping with UAVs</u> ISPRS Annals of ISPRS, 2020, V-1-2020, 231-238

Integration methodology

Cucci, D. A., Skaloud, J. <u>Joint adjustement of raw inertial data</u> <u>and image observations: methods and benefits</u>

Photogrammetric Week 8, Stuttgart, 2019

Acknowledgements

Camera: IGN, ENSG, Paris

- J.-P. Souchon, C. Thom, O. Martin
- Data collection & processing: ex. EPFL-TOPO
 - P. Clausen, E. Cledat
- Advices, analysis, consultation, IFP U. Stuttgart
 - M. Crammer
- Additonal assistants
 - Unnamed

