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Motivation

o New practices 
n integrated sensor orientation
n camera/system calibration
n R-IMU setup / pre-calibration
n autonomous navigation

o Open reference 
n benchmarking - methods
n comparing software 
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Agenda

1. Platform and payload 
2. System calibration
3. Missions 
4. Data access, formats & organization 
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Platform and payload – Aircraft & GNSS

o Plane
n Mentor Multiplex (Elapor foam), 1.6 m wing-span, 2.7 kg TOW 
n Pixhawk FMU 2 with (custom) Ardupilot (< 2020)

o GNSS 
n Topcon B110 dual freq. GPS / GLONASS at 10 Hz (< 2020)
n Master 1: Javad Triump2A dual freq. GPS/GLONNAS at 10 Hz
n Master 2: VRS at 1 Hz 
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Figure 2. Carbon mount holding the camera, board with 2 IMUs
and an embedded PC plus highlighted coordinate frames: (i)

green: the physical body-frame of IMU denoted NC0, (ii) blue:
the chosen navigation frame for IMU NC1, (iii) the chosen

camera-frame with x� y plane spanning image coordinates.

raw observations are stored internally on a micro-SD card at
10Hz frequency. A master station (Javad Triumph-2) logging
raw observations at the same frequency was always placed in
the take-off and landing area. Coordinates of its phase-center
are tied by post-processing to the Automated GNSS Network
of Switzerland (AGNES)1.

2.2 Camera

The employed camera, conceived by IGN (Martin et al., 2014),
is specially designed for close-range photogrammetric UAV ac-
quisitions. The imaging sensor is a full frame CMOS with
5120 ⇥ 3840 square pixels with an edge of 6.4 µm. The em-
ployed camera is a panchromatic version with 12-bit resolu-
tion. The shutter speed can be programmed as fast as 1/5000 s,
which – theoretically for this aircraft – allows obtaining ground
resolution (GSD) of ⇡1.2 cm2 with a tolerable blur ( 1/3
pixel) caused by the forward motion. The camera is interfaced
with Leica-M mount, to which we have installed Zeiss Biogon
35mm, f2.8 prime lens.

With external storage such as SSD the camera is capable of cap-
turing many images per second. However, to limit the weight of
the camera and lens within 300 g, images were stored on an in-
ternal micro-SD card. Due to that, the smallest interval between
subsequent images is ⇡1.3 s. Considering this plus the previ-
ously mentioned parameters the forward overlap at the limiting
GSD of 1.2 cm is ⇡ 70 %.

2.3 IMU

The payload includes a custom board (Kluter, 2013) with a
magnetometer, a static air-pressure sensor (barometer) and two
industrial-grade IMUs from the Navchip family3. In its first
version (V1), the Navchip sensor includes one IMU plus one
3-axis magnetometer in the same enclosure. Thus, three, 3-
axis magnetometers are available in total. Fig. 2 gives an over-
view of these components within their rigid carbon fiber as-
sembly. The IMU raw-data reading is programmable up to
1 kHz, but for more than one IMU is limited to 500Hz. The
data are stored in the internal memory and/or on an embed-
ded computer (Raspberry-Pi) connected over USB port running
a data-parsing software correcting the individual IMU data by
the pre-calibrated deterministic parameters and associating the
GPS-time-of-week (TOW) to each observation.

1http://pnac.swisstopo.admin.ch/pages/en/agnes.html
2For an altitude AGL=65m, GSD (m) = 6.4 · 10�6· AGL /0.035.
3https://www.intersense.com/navchip

2.4 Time tagging

The GNSS receiver provides a pulse-per-second (PPS) to the
autopilot as well as to the Gecko4Nav board, where it is further
forwarded to each IMU for steering its internal frequency for
data sampling and time-stamping to that of GPS second. Each
PPS is associated with a message containing TOW, so that the
offset from internal time-stamping can be determined by data-
parsing software. Although the camera is equipped with an in-
ternal GNSS receiver for synchronising image-acquisition with
GPS time, this one was not used. The images were triggered
as a function of distance by the auto-pilot and the camera was
issuing mid-exposure pulses when taking pictures. These were
then TOW-tagged as events within the primary Topcon B110
receiver.

3. SYSTEM CALIBRATION

3.1 Lever-arm

The determination of lever-arm follows the technique (Rehak,
Skaloud, 2015) that resolves camera to antenna phase-center
vector with mm-level precision in the camera c-frame. It ex-
ploits the possibility of fixing the fuselage of a small aircraft on
a tripod turned by 90 deg in roll and taking images of close
targets from several positions j 2 {1, · · · , J}. The camera
poses �

m
c,j = [cm, Rc

m]j , (i.e., the position and the attitude of
the camera c-frame) w.r.t. mapping m-frame are then obtained
via photogrammetry. The phase-center of a GNSS antenna is
replaced by a tip of a pin (Fig. 3), the position of which pmj
is determined (i.e., by tachymetry - theodolite) at each j. The
camera-antenna lever-arm ac is the (weighted) average4 value
of all ac

j = Rc
j,m

�
pmj � cmj

�
.

Figure 3. Lever-arm calibration camera to GNSS antenna,
phase-center of which is represented by a tip of pin (red-circle).

The lever-arm vector from camera to both IMUs, i.e., bc0, bc1 is
determined from the payload CAD-design or by caliper meas-
urements. Table 1 summarizes the values of all three lever-arm
vectors in the c-frame, axes of which are defined on Fig. 2 with
respect to the flight direction as x-backward, y-left wing and
z-down.

xc
1-bkw xc

2-left xc
3-down

(m) (m) (m) origin
ac +0.462 -0.001 -0.065 atn-phase
bc0 +0.133 +0.020 +0.000 NC0 imu
bc1 +0.113 +0.020 +0.000 NC1 imu

Table 1. Lever-arm values of antenna-phase center ac, and
imu-body navigation centers bc0, bc1 in the camera-frame.

4The weights are inversely proportional to variances of pj and cj as
determined by network adjustment using all observations.

Platform and payload – CAM & INS 

o Camera
n camLight from IGN (French mapping agency)  
n Full frame CMOS, 6 um/pix, 12 bits panchro, *.tiff
n Zeiss Biogon 35 mm, f 2.8 prime lens
n Shutter 1/5000 s: blur < 3 mm for 12 mm GSD

o R-IMU
n 2x Navchip V1 IMUs @ 500 Hz
n With 2x 3 axes magnetometer
n High res. Barometer
n PPS sync sampling rate

o Time tagging 
n All in GPS time, negligible jerk 
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System calibration

o Lever-arm  
n Method: Rehak & Skaloud, 2015
n Camera -> antenna, std ~ mm, level in camera frame
n Camera -> IMU, in camera fram from CAD design, std ~ mm

o IMU 
n Method: Clausen & Skaloud, 2020: non-orthogonalities, 

const. scale factors and const. in-field random biases

ISPRS Congress 2021 – Skaloud et al.
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raw observations at the same frequency was always placed in
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which – theoretically for this aircraft – allows obtaining ground
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pixel) caused by the forward motion. The camera is interfaced
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industrial-grade IMUs from the Navchip family3. In its first
version (V1), the Navchip sensor includes one IMU plus one
3-axis magnetometer in the same enclosure. Thus, three, 3-
axis magnetometers are available in total. Fig. 2 gives an over-
view of these components within their rigid carbon fiber as-
sembly. The IMU raw-data reading is programmable up to
1 kHz, but for more than one IMU is limited to 500Hz. The
data are stored in the internal memory and/or on an embed-
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urements. Table 1 summarizes the values of all three lever-arm
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System calibration  

o Lens 
n Close range ~50 signalized 

“aruko-targets”, photos with 
converging geometry

n In-flight (large block)
n Comparison of models Cledat et 

al. 2020 (young author award) 
n Indepenent study conducted by 

IFP, U. Stuttgart (M. Cramer) 

o Boresight
n In-flight (large block) 
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Missions – test zone

o Ground control 
n 40 signalized points 30 x 30 cm 
n ~1-2 cm accuracy, ~40 min static GNSS
n For auto centering (~ 0.1 - 0.05 pix) 
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Table 5. Stochastic calibration for the Navchip IMU, the values
hold for all the axes.

6. MISSIONS

6.1 Test zone

About 40 signalized targets (30 ⇥ 30 cm) were surveyed by
carrier-phase differential GNSS (about 40min long sessions)
with respect to the aforesaid national network (AGNES) in a
rural zone west of Lausanne, Switzerland as shown in Fig. 6.
The shape of the test field allows to fly different configurations,
(e.g. corridor – cr and block – bk) over a relatively large area
(⇡ 2 km2). The shape of the target shown in Fig. 7 is suitable
for automated image observations with an accuracy of a fraction
of pixel as further detailed in Sec. 6.3.

Figure 6. Test side with signalized targets of 30⇥ 30 cm (Fig. 7)

6.2 Overview

Tab. 6 provides an overview of exploitable missions flown in the
period May - October 2018 together with their specifications:
trajectory shape (block/corridor), surface covered in hectares
(ha), mean altitude above ground level (AGL), ground sampling
distance (GSD)/resolution of the imagery and status of data.
The flights 01 – 09 were taken over the rural-zone while mis-
sions 10 – 11 served for taking high-converging imagery for
calibrating the lens distortions. These were flown with a multi-
rotor UAV carrying digiCAM over a designated close-range tar-
get field. The other flights were completed with a fixed-wing
UAV over the previously described test-zone.

FL Acronym Shape/Size AGL GSD Img
# name (ha) (m) (cm) #

01 ign3f1 bk(?) 90 1.4 220
02 ign3f2 bk(16) 100 1.6 219
03 ign4b bk(43) 90/100 1.6/1.9 403
04 ign4c 3cr(?) 100 1.9 180
05 ign5 1cr(?) 110 2.0 107
06 ign6xl 4cr(33) 100/140 1.8 310
07 ign6u 3cr(38) 110 2.0 216
08 ign7f2 bk(42) 110/140 2.0 424
09 ign8 2bk(42) 140/180 2.5 440
10 ignCal1 bk(0.1) 12/16 0.3 74
11 ignCal2 bk(0.1) 12/16 0.2 344

Table 6. Overview of acquired data during summer 2018.

(a) GCP 5. (b) GCP 28.

Figure 7. Examples of automated GCPs measurements in
ign6xl flight, 30⇥ 30 pixels crops, depth 120 m.

6.3 GCPs image measurements

Several points on the grounds have been surveyed with a GNSS
receiver (PPK). Those have been signaled on the ground with a
30 cm black and white pattern, shown in Fig. 7, to be used either
as GCPs or checkpoints. The image coordinates of such points
are typically determined manually by human operators. Due to
the large amount of projections of such targets in the images,
a semi-automated procedure has been employed to accurately
determine the image coordinates of the targets center and to
match those to known 3D coordinates. This procedure works as
follows:

1. The image exterior orientation of all images is determined
from bundle adjustment with absolute aerial position con-
trol and no GCPs. Alternatively, an absolute aerial attitude
control is also used, which would allow to skip step 2.

2. Few projections (e.g., 4 points, 3 projections per point)
are manually identified and selected as GCPs. The bundle
adjustment is re-run to improve the image exterior orient-
ation.

3. The predicted image projections of all known points are
generated using the image exterior orientation determined
so far. These will be close to the true image projections.

4. The final sub-pixel image coordinates of the targets are
determined maximizing the cross-correlation between the
target template and the pixel values, in the neighbourhood
of the predicted image observations.

5. All the determined image coordinates are reviewed visu-
ally to exclude any outlier.

Two examples of the cross-correlation maximization procedure
are shown in Fig. 7: the blue square shows the search region,
centered at the predicted image observation for that specific tar-
get and image. The red “X” marks the determined, sub-pixel
center of the target and the blue lines its orientation on the im-
age.

The described procedure permits to substantially increase the
repeatability and the accuracy of target image observations. We
have quantified the accuracy of those to lie between 0.1 and
0.2 pixels, which we believe to be largely below what could be
obtained by a human operator.

Table 5. Stochastic calibration for the Navchip IMU, the values
hold for all the axes.
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(⇡ 2 km2). The shape of the target shown in Fig. 7 is suitable
for automated image observations with an accuracy of a fraction
of pixel as further detailed in Sec. 6.3.
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6.3 GCPs image measurements

Several points on the grounds have been surveyed with a GNSS
receiver (PPK). Those have been signaled on the ground with a
30 cm black and white pattern, shown in Fig. 7, to be used either
as GCPs or checkpoints. The image coordinates of such points
are typically determined manually by human operators. Due to
the large amount of projections of such targets in the images,
a semi-automated procedure has been employed to accurately
determine the image coordinates of the targets center and to
match those to known 3D coordinates. This procedure works as
follows:

1. The image exterior orientation of all images is determined
from bundle adjustment with absolute aerial position con-
trol and no GCPs. Alternatively, an absolute aerial attitude
control is also used, which would allow to skip step 2.

2. Few projections (e.g., 4 points, 3 projections per point)
are manually identified and selected as GCPs. The bundle
adjustment is re-run to improve the image exterior orient-
ation.

3. The predicted image projections of all known points are
generated using the image exterior orientation determined
so far. These will be close to the true image projections.

4. The final sub-pixel image coordinates of the targets are
determined maximizing the cross-correlation between the
target template and the pixel values, in the neighbourhood
of the predicted image observations.

5. All the determined image coordinates are reviewed visu-
ally to exclude any outlier.

Two examples of the cross-correlation maximization procedure
are shown in Fig. 7: the blue square shows the search region,
centered at the predicted image observation for that specific tar-
get and image. The red “X” marks the determined, sub-pixel
center of the target and the blue lines its orientation on the im-
age.

The described procedure permits to substantially increase the
repeatability and the accuracy of target image observations. We
have quantified the accuracy of those to lie between 0.1 and
0.2 pixels, which we believe to be largely below what could be
obtained by a human operator.



(a) ign6xl

(b) ign8

Figure 8. The trajectory of some of the released flights, with the
position of the images, the available checkpoints on ground, and

some of the tie-points as detected by Agisoft Metashape.

6.4 Released data

The released data (Sec. 7.3) contain close-range calibration
with converging photography ignCal2, large block flight with
perpendicular flight-lines ign8 (Fig. 8b) and long corridor
ign6xl (Fig. 8a). All mission have two flight-levels. More
details are given in Tab. 7 with the processing results presented
in (Cledat et al., 2020).

7. DATA ORGANISATION

7.1 Structure

The data-sets (Sec. 7.3) are organized as follows. The main
folder has README.md and FLIGHT.md files, the former con-
taining general information on data organization, the latter, key
characteristics of the flight. The sub-folder organization is de-
picted in Fig. 9:

• There are two folders inside the root directory:
01 Observations and 02 Processed. The first contains
the sensor measurements and the second the elements of
trajectory estimated from navigation data using different
methods.

• Inside the 01 Observations folder, there is a separate
sub-folder for each sensor (Camera, GNSS rover and base
station, and IMUs). A README.md file contains the inform-
ation about the sensors, data format, units and other auxil-
iary information relevant for processing.

• Inside the 02 Processed folder, two sub-folders contain
the GPS-PPK solution and the camera exterior orientation
derived from ING/GNSS Kalman smoothing.

ignCal2 ign8 ign6xl

UAV type Copter Fixed wing Fixed wing
Aerial control No Yes Yes
Geometry Close range Block Corridor
Used Img. 75 440 290
Flight lines 26 4
Flight levels 2 2 2
Long. overlap [%] ⇡ 100 65 70
Lat. overlap [%] ⇡ 100 45 70
Mean depth [m] 16.3 157 117
Min depth [m] 6.9 111 84
Max depth [m] 22.7 546 186
mean GSD [mm] 3 30 20
Tie-points 2,565 22,955 23,813
# GCPs 17 21 0
# CPs 1 4 24
GCPs accuracy
(XYZ) [mm] 2, 2, 2 10, 10, 15 10, 10, 15

GCPs accuracy
(xy) [pixels] 0.1 0.2 0.2

Table 7. Flights details of open data.

7.2 Data formats

The sensors selected for this data-set are two real and one vir-
tual GPS/GLONASS receivers, two IMUs, and camera. The
data from these sensors are provided in a format which is open
and can be used across different platforms. A summary of the
data formats used for different sensors is given in Tab. 8.

Data Format

Sensors
GPS RIINEX 2.11
IMU .csv

Camera .tif,.txt

Auxiliary GCPs .txt
Trajectory, EO .txt

Table 8. Summary of the data formats in the data-set

7.3 Access

The data-sets are available at (Skaloud et al., 2021c, Skaloud et
al., 2021b, Skaloud et al., 2021a) and are distributed under the
CC-BY 4.0 license 8.

8. CONCLUSIONS

Drone mapping offers an opportunity to evolve the integration
of navigation and optical sensors to an optimum when treat-
ing raw observations in a common adjustment. Yet gaining the
access of such data is less obvious. This is for instance the
case for obtaining raw inertial readings of a reasonable quality
with correct time-stamping or images without on-chip distor-
tion re-corrections by an unknown function. For these reasons
we hope that the release of the described data in an open do-
main have value within the scientific community and commer-
cial developers for either bench-marking traditional approaches
or conceiving and testing newer and improved concepts. This
release would be hardly possible without the contribution and
open spirit of many to which we sincerely thank while explicitly
mentioning some in the acknowledgement.

8https://creativecommons.org/licenses/by/4.0

Missions   

o Close range (no EO) 
o Large block (40 min) 
o Long corridor (2 km) 

o 2 flight levels, 100-180 AGL
o Sharp images 
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Open data 

o Repository
n Zenondo
n CC-BY 4.0 

license

o Access
n 3x ref. Skaloud 

et al. 2021a, b, c 
n https://doi.org/1

0.5281/zenodo.4
705380
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Data organization 

o Readme.md
n In each subdirectory  

o Formats

o Structure 
n 01_
n 02_ 
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.
|-- 01 _Observations
| |-- Camera
| | |-- Data
| | | |-- Events.txt
| | | |-- GCPs
| | | | |-- GCPs_img_coordinates.txt
| | | | |-- WGS84.txt
| | | | |__ WGS84_tangentplane.txt
| | | |__ Images
| | | |-- 8001. tif
| | | |-- 8002. tif
| | | |-- ...
| | |__ README.md
| |-- GPS
| | |-- Data
| | | |-- Master
| | | | |-- tr2b0703a .18G
| | | | |-- tr2b0703a .18H
| | | | |-- tr2b0703a .18N
| | | | |__ tr2b0703a .18o
| | | |-- Rover
| | | | |-- rov01840 .18g
| | | | |-- rov01840 .18n
| | | | |__ rov01840 .18o
| | | |__ Vrs
| | | |-- V339184H .18g
| | | |-- V339184H .18n
| | | |-- V339184H .18o
| | | |__ V339184H.txt
| | |__ README.md
| |__ IMU
| |-- Data
| | |-- Pre_calibrated
| | | |-- f8_0_sob.csv
| | | |__ f8_1_sob.csv
| | |__ Raw
| | |-- f8_0.csv
| | |__ f8_1.csv
| |__ README.md
|-- 02 _Processed
| |-- GPS -INS
| | |__ EO_local -plane.txt
| |__ GPS -PPK
| | |-- AntennaPos_Img_WGS84.txt
| | |-- AntennaPos_Img_WGS84_tangentplane.txt
| | |__ AntennaPos_WGS84.txt
|-- FLIGHT.md
|__ README.md

Figure 9. File–folder organization of a data-set (ign8).
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Figure 8. The trajectory of some of the released flights, with the
position of the images, the available checkpoints on ground, and

some of the tie-points as detected by Agisoft Metashape.

6.4 Released data

The released data (Sec. 7.3) contain close-range calibration
with converging photography ignCal2, large block flight with
perpendicular flight-lines ign8 (Fig. 8b) and long corridor
ign6xl (Fig. 8a). All mission have two flight-levels. More
details are given in Tab. 7 with the processing results presented
in (Cledat et al., 2020).

7. DATA ORGANISATION

7.1 Structure

The data-sets (Sec. 7.3) are organized as follows. The main
folder has README.md and FLIGHT.md files, the former con-
taining general information on data organization, the latter, key
characteristics of the flight. The sub-folder organization is de-
picted in Fig. 9:

• There are two folders inside the root directory:
01 Observations and 02 Processed. The first contains
the sensor measurements and the second the elements of
trajectory estimated from navigation data using different
methods.

• Inside the 01 Observations folder, there is a separate
sub-folder for each sensor (Camera, GNSS rover and base
station, and IMUs). A README.md file contains the inform-
ation about the sensors, data format, units and other auxil-
iary information relevant for processing.

• Inside the 02 Processed folder, two sub-folders contain
the GPS-PPK solution and the camera exterior orientation
derived from ING/GNSS Kalman smoothing.

ignCal2 ign8 ign6xl

UAV type Copter Fixed wing Fixed wing
Aerial control No Yes Yes
Geometry Close range Block Corridor
Used Img. 75 440 290
Flight lines 26 4
Flight levels 2 2 2
Long. overlap [%] ⇡ 100 65 70
Lat. overlap [%] ⇡ 100 45 70
Mean depth [m] 16.3 157 117
Min depth [m] 6.9 111 84
Max depth [m] 22.7 546 186
mean GSD [mm] 3 30 20
Tie-points 2,565 22,955 23,813
# GCPs 17 21 0
# CPs 1 4 24
GCPs accuracy
(XYZ) [mm] 2, 2, 2 10, 10, 15 10, 10, 15

GCPs accuracy
(xy) [pixels] 0.1 0.2 0.2

Table 7. Flights details of open data.

7.2 Data formats

The sensors selected for this data-set are two real and one vir-
tual GPS/GLONASS receivers, two IMUs, and camera. The
data from these sensors are provided in a format which is open
and can be used across different platforms. A summary of the
data formats used for different sensors is given in Tab. 8.

Data Format

Sensors
GPS RIINEX 2.11
IMU .csv

Camera .tif,.txt

Auxiliary GCPs .txt
Trajectory, EO .txt

Table 8. Summary of the data formats in the data-set

7.3 Access

The data-sets are available at (Skaloud et al., 2021c, Skaloud et
al., 2021b, Skaloud et al., 2021a) and are distributed under the
CC-BY 4.0 license 8.

8. CONCLUSIONS

Drone mapping offers an opportunity to evolve the integration
of navigation and optical sensors to an optimum when treat-
ing raw observations in a common adjustment. Yet gaining the
access of such data is less obvious. This is for instance the
case for obtaining raw inertial readings of a reasonable quality
with correct time-stamping or images without on-chip distor-
tion re-corrections by an unknown function. For these reasons
we hope that the release of the described data in an open do-
main have value within the scientific community and commer-
cial developers for either bench-marking traditional approaches
or conceiving and testing newer and improved concepts. This
release would be hardly possible without the contribution and
open spirit of many to which we sincerely thank while explicitly
mentioning some in the acknowledgement.

8https://creativecommons.org/licenses/by/4.0



Conclusions 

o Access to high quality data with 
reference is not obvious to test  
“new methodologies” (tie-
integration of all raw data, error 
modeling, long corridors, 
challenging geometry, etc.)

o First 3 data sets from more … 

o Goal: bench-marking traditional 
approaches & faster testing of 
newer and improved concepts.
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