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Motivation – Collapse Risk Quantification
-Low-Probability of Occurrence Seismic Events
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Motivation
-Earthquake-induced Losses of Code-Conforming Steel Buildings

⭐ Frequently occurring seismic events:
⭐ damage to non-structural content

⭐ Low-Probability of occurrence seismic events:
⭐ Hopefully “no collapse” but likely “residual deformations”

Source: Kumamoto 2016, JapanSource: Bruneau et al. (2011)
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Motivation
-Earthquake-induced Loss Assessment

Source: FEMA P58
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Overview of PBEE Methodology
λ DV( ) = G DV DM( )dG DM EDP( )dG EDP IM( )dλ IM( )

all
DMs

∫
all
EDPs

∫
all
IMs

∫

Image adopted by Zareian (2006)
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Historically, “bare frame” models have been utilized for nonlinear response
history analysis of frame buildings (e.g., Composite action, gravity framing is
ignored).

Motivation
-Impact of Numerical Model Representation
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Motivation
-Impact of Numerical Model Representation

⭐ Seismic performance assessment: typically with “bare-frame” models
⭐ Composite action, gravity framing typically ignored
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Problem Statement
Comprehensive Loss Assessment of Steel Frame Buildings 

Images courtesy of Prof. M. Engelhardt

Steel Special Concentrically Braced Frames Steel Special Moment Frames



11D. G. Lignos – Earthquake-induced Life-Cycle Costs in Steel Frame Buildings

² Utilize loss metrics in order to quantify the seismic-induced
losses in steel frame buildings designed in seismic regions.

² Assess the effect of analytical model representation of a
steel frame building on earthquake-induced losses under
various seismic intensities.

² Quantify the effect of residual deformations on the loss
assessment of steel frame buildings with steel MRFs and
SCBFs.

² Assess the effect of seismic design parameters (e.g., SCWB
ratio) on the earthquake-induced losses of steel frame
buildings in highly seismic regions.

Objectives and Scope
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Overview of Loss Estimation Methodology
E LT IM!" #$= E LT NC∩R, IM!" #$⋅P NC∩R IM( )

Loss given that  collapse does not occur
and the building will be repaired

! "###### $######
+E LT NC∩D!" #$⋅P NC∩D IM( )

Loss due to building demolition
   given no collapse but due to 
   large residual deformations

! "##### $#####
+ E LT C!" #$⋅P C IM( )

Loss when collapse occurs
! "### $###

² : Expected total repair costs conditioned on seismic intensity IM.

² :  Probability of having no-collapse given IM

² : Probability of having no-collapse given IM but the building 
will be demolished.

² : Probability of having collapse given IM.

E LT IM!" #$

P NC∩R IM( )

P C IM( )

P NC∩D IM( )

Source: Ramirez and Miranda (2013)

P D NC, IM( ) = P D RSDR( )dP RSDR NC, IM( )
0

∞

∫

² Probability of demolition given IM but no collapse (Assumed μ=1.5% and σ=0.30) :
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Archetype office steel buildings (2- to 20-stories) with perimeter steel
special moment frames designed in Urban California (IBC 2009, AISC-
2010)

(Sources: Elkady and Lignos 2014*)

Example: Steel Frame Buildings with MRFs

*Elkady, A. and Lignos, D.G. (2014). "Modeling of the Composite Action in Fully Restrained Beam-to-Column Connections:
Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames". Earthquake Engineering and
Structural Dynamics (EESD). Vol. 43(13), pp. 1935-1954, DOI: 10.1002/eqe.2430.



14D. G. Lignos – Earthquake-induced Life-Cycle Costs in Steel Frame Buildings

Archetype office steel buildings (2- to 12-stories) with perimeter steel
special concentrically braced frames designed in Urban California (IBC
2009, AISC-2010)

(Sources: NIST 2010)

Steel Frame Buildings with Concentrically Braced 
Frames
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Source: National Seismic Hazard Map (USGS 2008)

Seismic Hazard in Design Location of Interest
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Fragility and Cost Distribution Functions
² To compute realistic loss estimations for steel frame

buildings architectural layouts were developed.
² Steel frame buildings with SMFs: rectangular footprint of

14,000ft2
² Cost estimates were developed based on the RS Means

Cost Estimating Manuals.
² Non-structural components (both drift- and acceleration-

sensitive) were considered to compute the replacement cost
estimates per building.

² Structural components (e.g., beam-to-column connections,
columns, slabs, base plates, etc) were also considered.

² Base case replacement cost was estimated to be $250/ft2.
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Fragility and Cost Distribution Functions (3)
-Examples of Damageable Components

Assembly description Damage state Unit 

Fragility 
 parameters 

Repair cost   
parameters 

EDP xm β xm ($) β 
Columns base 
(W <	223kg/m) [7, 8] 

Crack initiation EA SDR 0.04 0.40 19224 0.41 
Crack propagation EA 0.07 0.40 27263 0.37 
Fracture EA 0.10 0.40 32423 0.34 

Columns base 
(223kg/m < W < 446kg/m) 
[7, 8] 

Crack initiation EA SDR 0.04 0.40 20082 0.39 
Crack propagation EA 0.07 0.40 29395 0.34 
Fracture EA 0.10 0.40 36657 0.31 

Columns base 
(W > 446kg/m) [7, 8] 

Crack initiation EA SDR 0.04 0.40 21363 0.37 
Crack propagation EA 0.07 0.40 32567 0.31 
Fracture EA 0.10 0.40 41890 0.27 

Column splices 
(W < 446kg/m) [7, 8] 

Crack Initiation EA SDR 0.04 0.40 09446 0.32 
Crack Propagation EA 0.07 0.40 11246 0.30 
Fracture EA 0.10 0.40 38473 0.17 

Column splices 
(223kg/m < W < 446kg/m) 
[7, 8] 

Crack Initiation EA SDR 0.04 0.40 10246 0.30 
Crack Propagation EA 0.07 0.40 13012 0.27 
Fracture EA 0.10 0.40 42533 0.16 

Column splices 
(W > 446kg/m) [7, 8] 

Crack Initiation EA SDR 0.04 0.40 11446 0.27 
Crack Propagation EA 0.07 0.40 14812 0.24 
Fracture EA 0.10 0.40 47594 0.14 

Column (≤ W27) [7, 8] Local buckling EA SDR 0.03 0.30 16033 0.35 
Lateral-torsional 
buckling EA 0.04 0.30 25933 0.31 

Fracture EA 0.05 0.30 25933 0.31 
Column (≥ W30) [7, 8] Local buckling. EA SDR 0.03 0.30 17033 0.33 

Lateral-torsional 
buckling EA 0.04 0.30 28433 0.28 

Fracture EA 0.05 0.30 28433 0.28 
RBS moment connections  
(one-sided, ≤ W27) [38]  

Yield anywhere EA SDR 0.01    0.17 00000 000 
Local buckling EA 0.0216 0.30 16033 0.35 
Fracture EA 0.05 0.30 25933 0.31 
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Fragility and Cost Distribution Functions (2)
-Examples of Damageable Components and Damage States

Story Drift Ratio, SDR [rad]
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(Source: Lignos and Karamanci 2013*)
*Lignos, D.G., and Karamanci, E. (2013). “Drift-based and Dual-Parameter Fragility Curves for Concentrically Braced Frames in

Seismic Regions". Journal of Construnctional Steel Research, Vol. 90, pp. 209-220.
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Steel Frame Buildings with Moment Resisting Frames
-Modeling of Composite Action and Interior Gravity Framing

*Elkady, A. and Lignos, D.G. (2014). "Modeling of the Composite Action in Fully Restrained Beam-to-Column Connections:
Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames". Earthquake Engineering and
Structural Dynamics (EESD). Vol. 43(13), pp. 1935-1954, DOI: 10.1002/eqe.2430.

Source: Elkady and Lignos (2014)*
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Experimental Data
Simulation

Experimental Data
Simulation

Steel Frame Buildings with Moment-Resisting Frames
-Modeling of steel columns

Source: Suzuki and Lignos (2015)*
*Suzuki, Y., Lignos, D.G. (2015). ”Large Scale Collapse Experiments of Wide Flange Steel Beam-Columns”, Proceedings 8th

International Conference on Behavior of Steel Structures in Seismic Areas, Shanghai, China, July 1-3, 2015.



21D. G. Lignos – Earthquake-induced Life-Cycle Costs in Steel Frame Buildings

Steel Frame Buildings with Special Concentrically Braced Frames
-Modeling of Steel Braces: Flexural Buckling and Fracture due to Low-Cycle Fatigue

*Karamanci, E., and Lignos, D.G. (2014). ”Computational Approach for Collapse Assessment of Concentrically Braced Frames
in Seismic Regions.” ASCE, Journal of Structural Engineering, Vol. 15(A401419), pp. 1-15.

Source: Karamanci and Lignos (2014)*
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*Karamanci, E., and Lignos, D.G. (2014). ”Computational Approach for Collapse Assessment of Concentrically Braced Frames
in Seismic Regions.” ASCE, Journal of Structural Engineering, Vol. 15(A401419), pp. 1-15.

Source: Karamanci and Lignos (2014)*

Steel Frame Buildings with Special Concentrically Braced Frames
-Modeling of Steel Braces: Flexural Buckling and Fracture due to Low-Cycle Fatigue
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Tracing Sidesway Collapse of Frame Buildings
-Example of definition of dynamic collapse due to earthquake shaking
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Collapse Risk of Steel Frame Buildings with MRFs
-Ground Motion Sets and Process to Trace Collapse

Source: Elkady and Lignos (2014)* 

Ground Motion Set from FEMA P695
Far-Field Set of 44 Ground Motions

Incremental Dynamic Analysis 
to Trace Dynamic Instability

*Elkady, A. and Lignos, D.G. (2014). "Modeling of the Composite Action in Fully Restrained Beam-to-Column Connections:
Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames". Earthquake Engineering and
Structural Dynamics (EESD). Vol. 43(13), pp. 1935-1954, DOI: 10.1002/eqe.2430.
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Evaluating the Collapse Risk of Steel Structures
-Collapse Metric: Mean Annual Frequency of Collapse, λC

Source: Eads et al. (2013)*

λc = Pc Sa( )
0

∞

∫ ⋅
dλSa Sa( )
d Sa( )

d Sa( )

Hazard Curves for Site Location

Pcollapse in t  years( ) =1− exp −λct( )

*Eads, L., Miranda, E., Krawinkler, H., Lignos, D.G. (2013). “An Efficient Method for Estimating the Collapse Risk of Structures
in Seismic Regions”. Earthquake Engineering and Structural Dynamics (EESD), Vol. 42(1), pp. 25-41, DOI: 10.1002/eqe.2191.
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Collapse Risk of Steel Frame Buildings with 
Concentrically Braced Frames

Source: Hwang and Lignos (2017)*
*Hwang, S-H., Lignos, D.G. (2017). “Effect of Modeling Assumptions on the Earthquake-Induced Losses and Collapse Risk of Steel-
Frame Buildings with Special Concentrically Braced Frames; ASCE Journal of Structural Engineering. Vol. 143(9), DOI :
10.1061/(ASCE)ST.1943-541X.0001851.
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Source: Hwang and Lignos (2017)*
*Hwang, S-H., Lignos, D.G. (2017). “Effect of Modeling Assumptions on the Earthquake-Induced Losses and Collapse Risk of Steel-Frame
Buildings with Special Concentrically Braced Frames; ASCE Journal of Structural Engineering. Vol. 143(9), DOI :
10.1061/(ASCE)ST.1943-541X.0001851.
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Normalized Loss Vulnerability Functions
-Utilization of Bare Frame Analytical Models

Source: Hwang and Lignos (2017)*
*Hwang, S-H., Lignos, D.G. (2017). “Effect of Modeling Assumptions on the Earthquake-Induced Losses and Collapse Risk of Steel-
Frame Buildings with Special Concentrically Braced Frames; ASCE Journal of Structural Engineering. Vol. 143(9), DOI :
10.1061/(ASCE)ST.1943-541X.0001851.
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Expected Losses Conditioned on Seismic Intensity
-Utilization of Bare Frame Analytical Models

Due to P-Delta
effects

² Hazards: Service Level, Design Basis (DLE) & Maximum Considered Event (MCE)
² Minimum monetary loss due to business interruption is not considered

Due to P-Delta
effects

Source: Hwang and Lignos (2017)*
*Hwang, S-H., Lignos, D.G. (2017). “Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in
highly seismic regions, Earthquake Engineering and Structural Dynamics (EESD), Vol. 46(13), 2141–2162. doi:10.1002/eqe.2898.
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8-story SMF: B-Model
Bare Frame Only

8-story SMF: CG-Model
Composite Action & Gravity System

Expected Losses Conditioned on Seismic Intensity
-Effect of Analytical Model Representation: Steel MRFs

Earthquake-induced loss assessment at discrete levels of intensity may be over-
conservative when it is based on “bare frame” model representations of the building.

*Hwang, S-H., Lignos, D.G. (2017). “Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in
highly seismic regions, Earthquake Engineering and Structural Dynamics (EESD), Vol. 46(13), 2141–2162. doi:10.1002/eqe.2898.
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Expected Losses Conditioned on a Single Seismic Intensity
-Effect of Numerical Model Representation on Losses

Bare Gr.-Fr.

Illustration: 6-story Steel Frame Building with CBFs
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Due to demolition

Accel. Sensitive
non-structural 
components
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10% in 50 year
seismic event

2% in 50 year
seismic event

Source: Hwang and Lignos (2017)*
*Hwang, S-H., Lignos, D.G. (2017). “Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in
highly seismic regions, Earthquake Engineering and Structural Dynamics (EESD), Vol. 46(13), 2141–2162. doi:10.1002/eqe.2898.
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Expected Losses Conditioned on Seismic Intensity
Effect of Strong-Column-Weak-Beam Ratio on Expected Losses
² Hazards: Service Level, Design Basis (DLE) & Maximum Considered Event (MCE)
² Minimum monetary loss due to business interruption is not considered

*Hwang, S-H., Lignos, D.G. (2017). “Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in
highly seismic regions, Earthquake Engineering and Structural Dynamics (EESD), Vol. 46(13), 2141–2162. doi:10.1002/eqe.2898.
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Expected Annual Losses (EAL) as a Loss Metric
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EAL weights all possible levels of the seismic hazard by taking into
account their probability of occurrence.
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Expected Annual Losses (EALs)

*Hwang, S-H., Lignos, D.G. (2017). “Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in
highly seismic regions, Earthquake Engineering and Structural Dynamics (EESD), Vol. 46(13), 2141–2162. doi:10.1002/eqe.2898.
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Expected Annual Losses – Steel CBFs

Bare G-Fr. Bare G-Fr. Bare G-Fr. Bare G-Fr.

Repairs in 
acceleration-sensitive 

components

Repairs in 
Drift-sensitive 
components

Repairs due to 
brace buckling

Source: Hwang and Lignos (2017)*
*Hwang, S-H., Lignos, D.G. (2017). “Earthquake-induced loss assessment of steel frame buildings with special moment frames designed in
highly seismic regions, Earthquake Engineering and Structural Dynamics (EESD), Vol. 46(13), 2141–2162. doi:10.1002/eqe.2898.
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Concluding Remarks
² Gravity framing system reduces the collapse risk of up to 75%.

² At frequently occurring seismic events:
² damage to non-structural content dominates losses regardless of the

selected numerical model and lateral load resisting system

² Earthquake-induced loss estimates at discrete seismic intensities:
² overestimated when building EDPs are based on “bare-frame”

models (Losses due to demolition over predicted ~ by a factor of 2).

² Expected Annual Losses as a loss-metric:
² Minor dependence on numerical model representation.
² Main contributors: Repairs due to acceleration sensitive components

followed by repairs due to steel brace buckling.
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Thank you for your kind attention!

For more information visit: resslab.epfl.ch


