La recherche d'Edoardo Charbon mise en vedette dans "Physics"

© 2021 EPFL

© 2021 EPFL

Le dernier article scientifique d’Edoardo Charbon, directeur du laboratoire d’architecture quantique, a été retenu par la revue "Physics"

L’article « Superluminal Motion-Assisted Four-Dimensional Light-in-Flight Imaging », du professeur Edoardo Charbon et ses collègues, de la faculté des sciences et techniques de l’ingénieur, a été retenu comme point fort de la revue scientifiquePhysics. Sous le titre « Capturing the Path of a Light Pulse », la recherche du professeur a été rendue accessible au grand public.

Physics est un magazine en ligne gratuit de l'American Physical Society. Il couvre les actualités, les opinions et met en avant les articles des revues Physical Review. Il se concentre sur les résultats qui changent le cours de la recherche, inspirent une nouvelle façon de penser ou suscitent la curiosité. Chaque année environ 260 articles sont sélectionnés pour être mis en avant parmi les quelque 20 000 articles publiés.

Résumé scientifique
Advances in high-speed imaging techniques have opened new possibilities for capturing ultrafast phenomena such as light propagation in air or through media. Capturing light in flight in three-dimensional space has been reported based on various types of imaging systems, whereas reconstruction of light-in-flight information in the fourth dimension has been a challenge. We demonstrate the four-dimensional light-in-flight imaging based on the observation of a superluminal motion captured by a new time-gated megapixel single-photon avalanche diode camera. A high-resolution light-in-flight video is generated without laser scanning, camera translation, interpolation, or dark noise subtraction. An unsupervised machine-learning technique is applied to analyze the measured spatiotemporal data set. A theoretical formula is introduced to perform least-square regression for numerically solving a nonlinear inverse problem, and extra-dimensional information is recovered without prior knowledge. The algorithm relies on the mathematical formulation equivalent to the superluminal motion in astrophysics, which is scaled by a factor of a quadrillionth. The reconstructed light-in-flight trajectory shows good agreement with the actual geometry of the light path. Applicability of the reconstruction approach to more complex scenes with multiple overlapped light trajectories is verified based on a data set generated by Monte Carlo simulations. Our approach could potentially provide novel functionalities to high-speed imaging applications such as non-line-of-sight imaging and time-resolved optical tomography.