News Mediacom

The art of shutting down a nuclear plant

The Mühleberg nuclear power plant © ENSI

13.02.12 - Gaëtan Girardin, researcher in nuclear engineering, gives us the key to understanding nuclear reactor safety. While the disaster at Fukushima is at the center of our conversation, the recent and minor incident at the Mühleberg plant is also discussed.

February the 8th at 1:45 p.m., the nuclear reactor at Mühleberg automatically stopped upon detection of an anomaly. Although not frequent, such events are not exceptional. Gaëtan Girardin, a researcher in nuclear engineering and head of the Crocus reactor at EPFL, will participate on February 22nd in “Science! On tourne”—a series of public dialogues about science. The first lecture is entitled "One Year Later: has Fukushima really changed the game?" He provides us with some techniques to better understand the operation of nuclear plants and, more particularly, the shutdown procedure that was made impossible in Japan.

After Fukushima, people have realized that shutting down a nuclear reactor is not as simple as turning out the lights. Things are a little more complex.
Gaëtan Girardin: That is correct; we need to stop a chain reaction. A nuclear reactor is a tank filled with metal bars about the diameter of a pen that contain uranium. This is the nuclear fuel itself. As it decays, the uranium nucleus releases neutrons, which will collide with its neighbors, and so on ... The heat produced by the fission reactions will be used to produce steam, which then turn an electric turbine. This is common to all power plants. To stop the reactor, that is to say to stop the chain reaction, we must act on the production of neutrons, or capture them.

Specifically, how does one proceed?
Between the fuel rods, or sometimes in place of some of them, we introduce bars called "control rods". In Mühleberg, for example, there are ceramic rods inside metal sheaths, which have the property of absorbing neutrons. In other reactors, the system may vary. But the principle remains the same whatever the technology.

In Fukushima, the reaction had yet been properly stopped...
And this is not sufficient. We know that once the chain reaction stopped, a reactor still produces about 7% of its operating energy as heat. This may seem trivial, but if you consider the power of a nuclear facility, and the fact that the whole is confined in a small space, there is the potential to seriously damage the materials. We must understand one thing: the heat does not magically disappear. Just as when you turn off an electric stovetop, its temperature does not drop instantly to 20 degrees. We therefore use a water circuit to cool the reactor, especially after it has been stopped. If this is not done correctly, there is a danger that the materials melt: first the fuel rods, then the tank and, finally the concrete containment unit. That is precisely what happened at Fukushima. Following the earthquake, the reactors were shut down correctly, but the tsunami flooded the cooling system and this led to a core meltdown.

At Mühleberg, it was a simple routine check which caused the shutdown.
It appears that the technicians on duty conducted a water test in the wrong place, compared to what was originally planned. I do not know the details of this incident. Maybe this caused a slight change in flow or pressure in one part of the water cooling supply circuits. Whatever the reason, an anomaly was detected by the monitoring system and the reactor was automatically switched off. This is a normal procedure in such circumstances.

Under what circumstances are these systems programmed to shut down?
A reactor is equipped with many security systems that monitor the vital parts of the machine. There are sensitive points, such as the fuel temperature or the flow of water in the cooling circuit. Any damage, however minor, will be detected and analyzed by security systems, and cause a reactor to shut down. It is absolutely essential.

This is not the first time a reactor is shut down automatically. The same phenomenon is quite common.
We should not exaggerate either. The last time in Mühleberg was in 2007—this does not happen every day. In 2011, none of our five reactors were automatically interrupted by the operating system. What strikes me is that these cases are perceived as a problem. In my opinion, it is reassuring that our plants are conceived so that the reactor shuts down by itself at the detection of the slightest abnormality. This shows that safety is never compromised.

Gaëtan Girardin is the first guest of “Science! On tourne” a new cycle of public lectures at the EPFL. The theme: "One Year Later: has Fukushima really changed the game?" - February 22nd at 12:15, Café Klee, Rolex Learning Center.

  • Author:
  • Lionel Pousaz
  • Source:
  • Mediacom
Return to previous page
Alumni
Olivier Glauser
Diplôme
Master en Informatique et systèmes de communication 1994
Parcours
1994 - 1996 HP
1996 - 1998 Phillippe Moris
1998 - 2005 MBA Universite de Harvard
2005 - 2009 ROTH Cl Partners
Fonction
Directeur général de Streamboat Ventures, Pékin

Contacts

Olivier Gauser
Steamboat Ventures
222 Hu Bin Road, Shanghai 200021
Tel: 86 (21) 2308 1800
olivier.glauser@steamboatvc.com
A3 EPFL
Rolex Learning Center
Case postale 122
1015 Lausanne 15
Tel: +41 (0)21 693 24 91