News Mediacom

Researchers Dismantle Bacteria's War Machinery

© photos.com

05.08.13 - A nano-machine cell killer: EPFL researchers decipher the attack strategy of certain bacteria, including the infamous Staphylococcus aureus.

This is a veritable mechanics of aggression on the nanoscale. Certain bacteria, including Staphylococcus aureus, have the ability to deploy tiny darts. This biological weapon kills the host cell by piercing the membrane. Researchers at EPFL have dismantled, piece by piece, this intriguing little machine and found an assembly of proteins that, in unfolding at the right time, takes the form of a spur. Published in "Nature Chemical Biology", this discovery offers new insight into the fight against pathogens that are increasingly resistant to antibiotics.

To attack the host cell, the weapon must first attach. On the surface of the aggressor is a mechanism composed of seven proteins that are folded over and assembled into a ring. The researchers were able to show how, in time, these long molecules unfold to form a kind of spur.

The trigger is just another part of the machine – a peptide, or a small organic molecule. When exposed to the enzymes of the host organism, it detaches. The balance of the assembly adjusts: the proteins adopt a new form, spreading out in a circular motion to form a spur, which then pierces the membrane of the host cell.

Mechanical at the molecular level
No chemical reaction is involved in these biological weapons. This is a mechanical phenomenon, albeit on the molecular level. Matteo Dal Peraro, co-author of this study, also uses the term “nanomachine” to refer to this tool of aggression.

The EPFL researchers have worked on strains of Aeromonas hydrophila – a bacterium well-known among travelers for the intestinal disorders it causes. In Petri dishes the researchers could, at will, cause the formation of these darts, thereby exposing microorganisms to digestive enzymes. They were able to model precisely how each protein dynamically rearranges, once the peptide is missing, to form the spur.

The protein mechanism - on the right, it forms a spur that pierce the cellular membrane

Hinder the attack mechanism
For co-author Gisou Van der Goot, this discovery opens new therapeutic perspectives, for example in cases of nosocomial infection staphylococci. “We could imagine catheters coated with substitute peptides,” she says. “They could prevent the formation of the ring and, thus, the spur. We would avoid many hospital infections.”

The concept is to address the weaponry of the bacteria rather than the bacteria itself. This is particularly attractive at a time when multiple antibiotic resistances are becoming increasingly common. “This approach would have the advantage of not causing mutations, and thereby resistance, in pathogenic bacteria,” says the researcher.

---

Matteo T Degiacomi,Ioan Iacovache, Lucile Pernot, Mohamed Chami, Misha Kudryashev, Henning Stahlberg, F Gisou van der Goot & Matteo Dal Peraro, Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism, in Nature Chemical Biology (2013) doi:10.1038/nchembio.1312

  • Author:
  • Lionel Pousaz
  • Source:
  • Mediacom
Return to previous page
Alumni
Olivier Glauser
Diplôme
Master en Informatique et systèmes de communication 1994
Parcours
1994 - 1996 HP
1996 - 1998 Phillippe Moris
1998 - 2005 MBA Universite de Harvard
2005 - 2009 ROTH Cl Partners
Fonction
Directeur général de Streamboat Ventures, Pékin

Contacts

Olivier Gauser
Steamboat Ventures
222 Hu Bin Road, Shanghai 200021
Tel: 86 (21) 2308 1800
olivier.glauser@steamboatvc.com
A3 EPFL
Rolex Learning Center
Case postale 122
1015 Lausanne 15
Tel: +41 (0)21 693 24 91