Partager: 
© 2015 Fabrizio Carbone/EPFL

02.03.15 - La lumière se comporte à la fois comme une particule et comme une onde. Depuis Einstein, les scientifiques tentent d’observer ces deux aspects simultanément. Pour la première fois, des chercheurs de l’EPFL ont réussi à prendre un instantané de ce double comportement.

La lumière peut se manifester simultanément comme une particule, ou comme une onde. C’est ce que nous enseigne la mécanique quantique. Mais jusqu’ici, jamais une expérience n’avait permis de montrer les deux natures de la lumière en même temps. On pouvait voir l’onde ou la particule, mais toujours à des moments différents. En utilisant une approche expérimentale radicalement nouvelle, les scientifiques de l’EPFL ont pu prendre le premier instantané jamais réalisé de la lumière se comportant à la fois comme une onde et comme une particule. Le résultat est publié dans Nature Communications.

Lorsque de la lumière UV frappe une surface métallique, elle provoque l’émission d’électrons. Pour expliquer cet effet «photoélectrique», Albert Einstein a montré que la lumière - que l’on croyait jusque là n’être qu’une onde - était aussi un faisceau de particules. Toutefois, même si un grand nombre d’expériences ont permis d’étudier avec succès ces deux comportements, jamais on n’a pu les observer en même temps.

Une nouvelle approche pour un effet classique

Une équipe de chercheurs de l'EPFL, conduite par Fabrizio Carbone, a mené une expérience basée sur une idée ingénieuse: utiliser des électrons pour photographier la lumière. Les chercheurs ont ainsi réussi, pour la première fois, une photographie unique de la lumière vue simultanément sous la forme d’une onde et d’un faisceau de particules.

L’expérience se déroule de la manière suivante: une impulsion laser est envoyée sur un minuscule nano-fil métallique. Le laser ajoute de l’énergie aux particules chargées dans le nano-fil, ce qui les fait vibrer. La lumière voyage le long du minuscule fil dans deux directions possibles, comme des voitures sur une autoroute. Lorsque les ondes voyageant dans des directions opposées se rencontrent, elles forment une nouvelle onde, qui paraît rester immobile. Cette onde stationnaire devient une source de lumière et rayonne le long du fil.

C’est ici qu’intervient l’astuce de l’expérience: les scientifiques envoient un flux d’électrons à proximité du nano-fil, en les utilisant pour photographier l’onde de lumière stationnaire. Lorsque les électrons interagissent avec la lumière confinée du nano-fil, certains accélèrent, d’autres ralentissent. En utilisant un microscope ultrarapide pour photographier l’endroit où ce changement de vitesse avait lieu, l’équipe de Carbone a pu alors visualiser l’onde stationnaire, qui signe la nature ondulatoire de la lumière.

Mais tandis que ce phénomène montre la nature d’onde de la lumière, il démontre aussi, en même temps, sa nature de particule. En effet, lorsque les électrons passent à proximité de l’onde stationnaire, ils «frappent» les particules de lumière, les photons. Comme mentionné plus haut, ceci affecte leur vitesse, les faisant se déplacer plus vite ou plus lentement. Ce changement de vitesse apparaît comme un échange de «paquets» d’énergie (quanta) entre les électrons et les photons. L’existence même de ces paquets d’énergie montre que la lumière se comporte comme une particule.

«L’expérience démontre pour la toute première fois que l’on peut filmer directement la mécanique quantique - et sa nature paradoxale», explique Fabrizio Carbone. De plus, l’importance de ce travail pionnier pourra s’étendre au-delà de la science fondamentale et vers de futures technologies. Comme l’explique le chercheur, «être en mesure de photographier et de contrôler des phénomènes quantiques à l’échelle nanométrique ouvre de nouvelles perspectives vers l’informatique quantique.»

Ce travail est le fruit d'une collaboration entre le Laboratoire pour la microscopie et la diffusion d'électrons de l'EPFL, le Department of Physics of Trinity College (US), et le Physical and Life Sciences Directorate du Lawrence Livermore National Laboratory. L'imagerie a été réalisée grâce au microscope à transmission ultrarapide de l'EPFL : il est l’un des deux seuls microscopes au monde capable de distinguer les particules en fonction de leur énergie embarquée.

Source

Piazza L, Lummen TTA, Quiñonez E, Murooka Y, Reed BW, Barwick B, Carbone F. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field.Nature Communications 02 March 2015. DOI: 10.1038/ncomms7407

Partager: